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Motivation Higher dimensional gravity

Higher dimensional gravity

General relativity makes sense in any # of dimensions.

D is a parameter.

We vary parameters to understand the theory better: c.f. coupling
constants, gauge groups, . . .

Sometimes we need extra dimensions: string theory, large extra dimensions
scenarios, . . .

Is gravity the same in D > 4?
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Motivation Higher dimensional gravity

Black holes in four vs. five dimensions

In four dimensions there are horizon topology and black hole uniqueness
theorems.

In five dimensions, we are allowed an S1 × S2 horizon as well – the black
ring. [Emparan, Reall]
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For a range of energies and angular momenta, it is possible to have two black ring

and one black hole solutions - violating uniqueness.
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Motivation Higher dimensional gravity

Higher dimensions

For D ≥ 6: no exact solutions (except Myers-Perry). Approximate
solutions for RS1 � RS3 .

S

J

J

S

[Emparan et al.]

Other topologies? [Galloway, Schön]

Subhaneil Lahiri (Harvard) Black rings from fluid mechanics May 1, 2009 4 / 28



Motivation Higher dimensional gravity

Higher dimensions

For D ≥ 6: no exact solutions (except Myers-Perry). Approximate
solutions for RS1 � RS3 .

S

J J

S

[Emparan et al.]

Other topologies? [Galloway, Schön]

Subhaneil Lahiri (Harvard) Black rings from fluid mechanics May 1, 2009 4 / 28



Motivation Higher dimensional gravity

Higher dimensions

For D ≥ 6: no exact solutions (except Myers-Perry). Approximate
solutions for RS1 � RS3 .

S

J J

S

[Emparan et al.]

Other topologies? [Galloway, Schön]

Subhaneil Lahiri (Harvard) Black rings from fluid mechanics May 1, 2009 4 / 28



Motivation The AdS/CFT correspondence

The AdS/CFT correspondence

Gravitational theory ⇔ Non-gravitational theory

Low curvature Strong coupling

Black holes Deconfinement
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Motivation The AdS/CFT correspondence

Black holes and fluid mechanics

At long wavelengths, deconfined plasma described by fluid mechanics.

Only input: equation of state, transport coefficients. Also works at strong
coupling.

Equation of state: black hole thermodynamics, static case.
Transport coefficients: small fluctuations, e.g. η/s = 1/4π. [Son,Starinets]

=⇒ universal features of black holes at long wavelengths.
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Plasmaball setup

Plasmaballs in confining theories

Plasmaballs are a bubbles of deconfined phase, surrounded by confined
phase, held together by surface tension.

Focus on theories that come from compactifying conformal theories on a
Scherk-Schwarz circle.

Leads to confining theory.
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Plasmaball setup Scherk-Schwarz AdS

Confined phase

At low temperatures, gravity dual: AdS soliton:

ds2 =
R2

AdS

z2

(
−dt2 + FRθ

(z)dθ2 + d~x2 +
1

FRθ
(z)

dz2

)
,

where Fa(u) = 1−
(
πz
a

)4
and R2

AdS =
√
λα′. [Witten]

Small z : Poincaré AdS5 with one compact direction.

At z = Rθ/π, the θ circle contracts: space stops.

z = 0 z = Rθ

π
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Plasmaball setup Scherk-Schwarz AdS

Deconfined phase

At high temperatures: the black brane:

ds2 =
R2

AdS

z2

(
−Fβ(z) dt2 + dθ2 + d~x2 +

1

Fβ(z)
dz2

)
.

Horizon at z = β
π . Temperature: T = 1/β.

Dominant phase above transition temperature, Tc = 1
Rθ

.

The equation of state of the dual plasma can be found from this gravity
solution.

P =
α

Tc
(
T 4 − Tc4

)
.
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Plasmaball setup Properties of plasmaballs

Plasmaball solutions

On the bulk side, deep interior looks like black brane. Far from the
plasmaball, it looks like the AdS soliton. There is a domain wall that
interpolates between the two.

AdS solitonBlack brane

Boundary

AdS soliton

In the limit of infinitely large radius, a numerical domain wall solution has
been found. The surface tension and thickness can be computed from this
solution. [Aharony, Minwalla, Wiseman]
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Plasmaball setup Properties of plasmaballs

Topology

The Scherk-Schwarz circle does not contract in the black brane region but
does contract in the AdS soliton region.

Boundary

Black brane AdS solitonAdS soliton

Horizon topology: fibre circle over the plasmaball, contracting at surfaces.
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Relativistic fluid mechanics

Fluid mechanics

The equations of motion are ∇µT
µν = 0. The dynamical input is in

specifying Tµν .

For long wavelengths, we need only go up to one derivative terms:
Tµν = Tµν

perfect + Tµν
dissipative.

Coefficients depend on T . Determined from static black brane.

This approximation breaks down at surfaces – but at scales � surface
thickness we can replace these regions with a δ-function localised surface
tension.
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Three dimensional configurations Solutions

Three dimensional configurations

Rigid rotation: (ut , ur , uφ) = γ(1, 0,Ω), where γ = 1√
1−v2

.

Centripetal force provided by pressure gradient.

We find Tµν
dissipative ∝ ~∇(T /γ).

Interior: e.o.m. ∇µT
µν
perfect ∝ ~∇(T /γ) = 0.

Surfaces: P = ±σ
r . Relates (T /γ) to Ω and position of surface.
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Three dimensional configurations Solutions

Solutions

We find two types of solution:

Plasmaballs Plasmarings

Ω Ω

S1 −→ S3

↓

B2

S1 −→ S1 × S2

↓

S1 × B1
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Three dimensional configurations Thermodynamics

Thermodynamics

We compute the thermodynamic properties of the whole solution with

E =

∫
d2x

(
T tt
)
,

L =

∫
d2x

(
r2T tφ

)
,

S =

∫
d2x (γs) .

Then we compute an overall temperature and angular velocity via

dE = TdS + ΩdL ,

we find

T =
T
γ
, Ω as before .
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Three dimensional configurations Thermodynamics

Phase diagram
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Higher dimensional generalisations Six dimensional gravity

Topologies in six dimensions

S4

↓
B3

z

r
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B2 × S1

z

r

S2 × S2

↓
B1 × S2

z

r
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z

r
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Higher dimensional generalisations Six dimensional gravity

Solving equations of motion

Again: rigid rotation (ut , ur , uφ, uz) = γ(1, 0,Ω, 0).

Again: Tγ = T = constant.

Now: surface satisfies P = σKµ
µ .
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Higher dimensional generalisations Solutions in six dimensions

Ordinary balls
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Higher dimensional generalisations Solutions in six dimensions

Pinched balls
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Higher dimensional generalisations Solutions in six dimensions

Rings
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Higher dimensional generalisations Solutions in six dimensions

Phase diagram

J

S

[Bhardwaj,Bhattacharya]
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Higher dimensional generalisations Seven dimensional gravity

Topologies in seven dimensions
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Higher dimensional generalisations Seven dimensional gravity

Approximate solutions

For ring, B3 × S1, take ε =
RB3

RS1
small.

For ‘torus’, B2 × T 2, take ε =
RB2

RT2
small.

Expand in ε. At O(ε0) – just a tube.

Similar to black-fold construction of Emparan et al.
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Higher dimensional generalisations Seven dimensional gravity

Ring
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Higher dimensional generalisations Seven dimensional gravity

Torus
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Summary

Summary

We can get insight to some problems in classical gravity from fluid
mechanics in AdS/CFT.

In five dimensions – qualitative agreement with flat space gravity.

In six dimensions – proposal for phase diagram.

In seven dimensions – new topology.

Future: numerical solutions for D = 7, phase diagram.

Gregory-Laflamme vs. Plateau-Rayleigh. [Caldarelli et al.]
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