Black rings from fluid mechanics

Subhaneil Lahiri

based on arXiv:0705.3404 [hep-th] with Shiraz Minwalla and arXiv:0903.4734 [hep-th] with Jyotirmoy Bhattacharya

May 1, 2009

Subhaneil Lahiri (Harvard)

Higher dimensional gravity

General relativity makes sense in any # of dimensions.

D is a parameter.

We vary parameters to understand the theory better: c.f. coupling constants, gauge groups, ...

Sometimes we need extra dimensions: string theory, large extra dimensions scenarios, . . .

Is gravity the same in D > 4?

Black holes in four vs. five dimensions

In four dimensions there are horizon topology and black hole uniqueness theorems.

In five dimensions, we are allowed an $S^1 \times S^2$ horizon as well – the black ring. [Emparan, Reall]

For a range of energies and angular momenta, it is possible to have two black ring and one black hole solutions - violating uniqueness.

Subhaneil Lahiri (Harvard)

Higher dimensions

For $D \ge 6$: no exact solutions (except Myers-Perry). Approximate solutions for $R_{S^1} \gg R_{S^3}$.

[Emparan et al.]

Higher dimensions

For $D \ge 6$: no exact solutions (except Myers-Perry). Approximate solutions for $R_{S^1} \gg R_{S^3}$.

[Emparan et al.]

Higher dimensions

For $D \ge 6$: no exact solutions (except Myers-Perry). Approximate solutions for $R_{S^1} \gg R_{S^3}$.

[Emparan et al.] [Galloway, Schön]

Other topologies?

The AdS/CFT correspondence

${\sf Gravitational\ theory} \quad \Leftrightarrow \quad {\sf Non-gravitational\ theory}$

Low curvature

Strong coupling

Black holes

Deconfinement

Black holes and fluid mechanics

At long wavelengths, deconfined plasma described by fluid mechanics.

Only input: equation of state, transport coefficients. Also works at strong coupling.

Black holes and fluid mechanics

At long wavelengths, deconfined plasma described by fluid mechanics.

Only input: equation of state, transport coefficients. Also works at strong coupling.

Equation of state: black hole thermodynamics, static case. Transport coefficients: small fluctuations, e.g. $\eta/s = 1/4\pi$. [Son,Starinets]

 \implies universal features of black holes at long wavelengths.

Outline

- 2 Plasmaball setup
- 3 Relativistic fluid mechanics
- 4 Three dimensional configurations
- 5 Higher dimensional generalisations

6 Summary

Plasmaballs in confining theories

Plasmaballs are a bubbles of deconfined phase, surrounded by confined phase, held together by surface tension.

Focus on theories that come from compactifying conformal theories on a Scherk-Schwarz circle.

Leads to confining theory.

Confined phase

At low temperatures, gravity dual: AdS soliton:

$$\mathrm{d}s^2 = \frac{R_{\mathrm{AdS}}^2}{z^2} \left(-\mathrm{d}t^2 + F_{R_\theta}(z) \,\mathrm{d}\theta^2 + \mathrm{d}\vec{x}^2 + \frac{1}{F_{R_\theta}(z)} \,\mathrm{d}z^2 \right),$$

where $F_a(u) = 1 - \left(\frac{\pi z}{a}\right)^4$ and $R_{AdS}^2 = \sqrt{\lambda} \alpha'$. [Witten]

Small z: Poincaré AdS₅ with one compact direction.

At $z = R_{\theta}/\pi$, the θ circle contracts: space stops.

$$z = 0$$
 $z = \frac{R_{\theta}}{\pi}$

Deconfined phase

At high temperatures: the black brane:

$$\mathrm{d}s^2 = \frac{R_{\mathsf{AdS}}^2}{z^2} \left(-F_\beta(z) \,\mathrm{d}t^2 + \mathrm{d}\theta^2 + \mathrm{d}\vec{x}^2 + \frac{1}{F_\beta(z)} \,\mathrm{d}z^2 \right).$$

Horizon at $z = \frac{\beta}{\pi}$. Temperature: $\mathcal{T} = 1/\beta$.

Deconfined phase

At high temperatures: the black brane:

$$\mathrm{d}s^2 = \frac{R_{\mathsf{AdS}}^2}{z^2} \left(-F_\beta(z) \,\mathrm{d}t^2 + \mathrm{d}\theta^2 + \mathrm{d}\vec{x}^2 + \frac{1}{F_\beta(z)} \,\mathrm{d}z^2 \right).$$

Horizon at $z = \frac{\beta}{\pi}$. Temperature: $\mathcal{T} = 1/\beta$.

Dominant phase above transition temperature, $T_c = \frac{1}{R_a}$.

The equation of state of the dual plasma can be found from this gravity solution.

$$\mathcal{P} = rac{lpha}{\mathcal{T}_{\rm c}} \left(\mathcal{T}^{4} - \mathcal{T}_{\rm c}^{4}
ight).$$

On the bulk side, deep interior looks like black brane. Far from the plasmaball, it looks like the AdS soliton. There is a domain wall that interpolates between the two.

Boundary

AdS soliton AdS soliton

In the limit of infinitely large radius, a numerical domain wall solution has been found. The surface tension and thickness can be computed from this solution. [Aharony, Minwalla, Wiseman] The Scherk-Schwarz circle does not contract in the black brane region but does contract in the AdS soliton region.

Horizon topology: fibre circle over the plasmaball, contracting at surfaces.

The equations of motion are $\nabla_{\mu}T^{\mu\nu} = 0$. The dynamical input is in specifying $T^{\mu\nu}$.

For long wavelengths, we need only go up to one derivative terms: $T^{\mu\nu} = T^{\mu\nu}_{\text{perfect}} + T^{\mu\nu}_{\text{dissipative}}.$

Coefficients depend on \mathcal{T} . Determined from static black brane.

This approximation breaks down at surfaces – but at scales \gg surface thickness we can replace these regions with a δ -function localised surface tension.

Rigid rotation: $(u^t, u^r, u^{\phi}) = \gamma(1, 0, \Omega)$, where $\gamma = \frac{1}{\sqrt{1-v^2}}$. Centripetal force provided by pressure gradient.

Rigid rotation: $(u^t, u^r, u^{\phi}) = \gamma(1, 0, \Omega)$, where $\gamma = \frac{1}{\sqrt{1-v^2}}$. Centripetal force provided by pressure gradient.

We find $T_{\text{dissipative}}^{\mu\nu} \propto \vec{\nabla}(\mathcal{T}/\gamma).$

Rigid rotation: $(u^t, u^r, u^{\phi}) = \gamma(1, 0, \Omega)$, where $\gamma = \frac{1}{\sqrt{1-v^2}}$. Centripetal force provided by pressure gradient.

We find $T_{\text{dissipative}}^{\mu\nu} \propto \vec{\nabla}(\mathcal{T}/\gamma).$

Interior: e.o.m. $\nabla_{\mu} T^{\mu\nu}_{\text{perfect}} \propto \vec{\nabla}(\mathcal{T}/\gamma) = 0.$

Rigid rotation: $(u^t, u^r, u^{\phi}) = \gamma(1, 0, \Omega)$, where $\gamma = \frac{1}{\sqrt{1-v^2}}$. Centripetal force provided by pressure gradient.

We find $T^{\mu\nu}_{\rm dissipative} \propto \vec{\nabla}(\mathcal{T}/\gamma).$

Interior: e.o.m. $\nabla_{\mu} T^{\mu\nu}_{\text{perfect}} \propto \vec{\nabla} (\mathcal{T}/\gamma) = 0.$

Surfaces: $\mathcal{P} = \pm \frac{\sigma}{r}$. Relates (\mathcal{T}/γ) to Ω and position of surface.

Solutions

We find two types of solution:

 B^2

Solutions

We find two types of solution:

Thermodynamics

We compute the thermodynamic properties of the whole solution with

$$\begin{split} E &= \int \mathrm{d}^2 x \left(T^{tt} \right), \\ L &= \int \mathrm{d}^2 x \left(r^2 T^{t\phi} \right), \\ S &= \int \mathrm{d}^2 x \left(\gamma s \right). \end{split}$$

Thermodynamics

We compute the thermodynamic properties of the whole solution with

$$\begin{split} E &= \int \mathrm{d}^2 x \left(T^{tt} \right), \\ L &= \int \mathrm{d}^2 x \left(r^2 T^{t\phi} \right), \\ S &= \int \mathrm{d}^2 x \left(\gamma s \right). \end{split}$$

Then we compute an overall temperature and angular velocity via

$$\mathrm{d} E = T \mathrm{d} S + \Omega \mathrm{d} L,$$

we find

$${\cal T} = {{\cal T}\over \gamma}\,, \qquad \Omega \; {
m as \; before}\,.$$

э.

Topologies in six dimensions

$$S^4$$
 $S^3 \times S^1$

 $S^2 \times T^2$

Topologies in six dimensions

Topologies in six dimensions

Solving equations of motion

Again: rigid rotation $(u^t, u^r, u^{\phi}, u^z) = \gamma(1, 0, \Omega, 0).$

Again: $\frac{T}{\gamma} = T = \text{constant.}$

Now: surface satisfies $\mathcal{P} = \sigma K^{\mu}_{\mu}$.

Ordinary balls

Pinched balls

Rings

≣⇒

◆ □ ▶ ◆ 🗇

[Bhardwaj,Bhattacharya]

[Bhardwaj,Bhattacharya]

[Bhardwaj,Bhattacharya]

Topologies in seven dimensions

- E - N

Topologies in seven dimensions

Approximate solutions

For ring,
$$B^3 imes S^1$$
, take $\epsilon=rac{R_{B^3}}{R_{S^1}}$ small.

For 'torus',
$$B^2 imes T^2$$
, take $\epsilon=rac{R_{B^2}}{R_{T^2}}$ small.

Expand in ϵ . At $\mathcal{O}(\epsilon^0)$ – just a tube.

Similar to black-fold construction of Emparan et al.

Ring

Torus

≣⇒

A B >
 A B >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

We can get insight to some problems in classical gravity from fluid mechanics in $\mathsf{AdS}/\mathsf{CFT}.$

In five dimensions - qualitative agreement with flat space gravity.

In six dimensions – proposal for phase diagram.

In seven dimensions – new topology.

Future: numerical solutions for D = 7, phase diagram.

Gregory-Laflamme vs. Plateau-Rayleigh. [Caldarelli et al.]