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Abstract
We use the AdS/CFT correspondence in a regime where the field theory is well described
by fluid mechanics to study large black holes in asymptotically locally anti de Sitter spaces.
In particular, we use the fluid description to study the thermodynamics of the black holes
and the existence of exotic horizon topologies in higher dimensions.

First we test this method by comparing large rotating black holes in global AdSD
spaces to stationary solutions of the relativistic Navier-Stokes equations on SD−2. Reading
off the equation of state of this fluid from the thermodynamics of non-rotating black holes,
we proceed to construct the nonlinear spinning solutions of fluid mechanics that are dual to
rotating black holes. In all known examples, the thermodynamics and the local stress tensor
of our solutions are in precise agreement with the thermodynamics and boundary stress
tensor of the spinning black holes. Our results yield predictions for the thermodynamics of
all large black holes in all theories of gravity on AdS spaces, for example, IIB string theory
on AdS5 × S5 and M theory on AdS4 × S7 and AdS7 × S4.

We then construct solutions to the relativistic Navier-Stokes equations that de-
scribe the long wavelength collective dynamics of the deconfined plasma phase of N = 4
Yang Mills theory compactified down to d = 3 on a Scherk-Schwarz circle. Our solutions
are stationary, axially symmetric spinning balls and rings of plasma. These solutions, which
are dual to (yet to be constructed) rotating black holes and black rings in Scherk-Schwarz
compactified AdS5, and have properties that are qualitatively similar to those of black holes
and black rings in flat five dimensional gravity.

We also study the stability of these solutions to small fluctuations, which pro-
vides an indirect method for studying Gregory-Laflamme instabilities. We also extend the
construction to higher dimensions, allowing one to study the existence of new black hole
topologies and their phase diagram.
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Chapter 1

Introduction

In this dissertation we will be using insights originating in string theory, namely
the AdS/CFT correspondence [4–7], to simplify the study of classical black holes in higher
dimensions. General relativity makes sense in any number of dimensions. As emphasised by
Barak Kol and collaborators, the number of dimensions, D, can be thought of as a parameter
of the theory (or even an expansion parameter [8–11]). It is common in theoretical physics to
think about values for parameters that differ from reality in order to understand the theory
better. For example, in quantum field theory and statistical mechanics we often consider
asymptotically small or large coupling constants for the purposes of perturbation theory.
We also often study gauge theories with gauge groups other than the SU(3)×SU(2)×U(1)
that underlies the standard model.

The study of the general theory of relativity in higher dimensions than the four
that we observe may not be as disconnected from reality as it first appears. Interest in
the subject dates back to the work of Kaluza and Klein [12, 13] which proposed unification
of gravity and electromagnetism starting from general relativity in five dimensions. The
basic idea of higher dimensional gravity remains in string theory, which suggests that a
consistent theory of quantum gravity requires extra dimensions. In addition, the large
extra dimensions scenario [14–16] proposes that the hierarchy problem of particle physics
could have a higher dimensional resolution.

One can ask if higher dimensional gravity is just more of the same, or if there
are any new features once we take D > 4 ? It turns out that the answer is the latter. In
four dimensions, all stationary black holes must have a horizon with the topology of S2, a
sphere [17, 18]. In higher dimensions, we can have extended black objects: black strings
and p-branes with horizon topology SD−p−2×Rp [19]. Even if we restrict attention to black
objects of finite size, once we go to five dimensions, in addition to the usual black holes with
spherical S3 horizons we have black ring solutions with horizon topology S1 × S2 [20, 21].
In higher dimensions, the situation is much more complicated and somewhat mysterious
[22, 23]. We will discuss these issues further in §1.1.

In this dissertation, we are going to attack these problems with a new tool. The
AdS/CFT correspondence [4–7] relates a theory of gravity in asymptotically anti de Sitter
spacetimes to lower dimensional non-gravitational field theories, typically gauge theories
with a large number of colours, N . One particularly interesting entry in the dictionary

1



2 Chapter 1: Introduction

maps black holes on the gravitational side to the deconfined phase of the dual gauge theory.
When we put this together with the general lore that field theories at high densities and
long wavelengths compared to the scale of microscopic physics are well described by fluid
mechanics, we arrive at the conclusion that there should be a regime where classical black
hole physics coincides with fluid mechanics.

In the fluid mechanical description, the theory is described by few properties.
First there is the equation of state that relates the density, pressure, temperature etc. Then
there are the transport coefficients that describe the response on the fluid to deviations
from equilibrium. For the fluids that are dual to theories of gravity, the equation of state
can be determined by applying the methods of gravitational thermodynamics to static black
holes or black branes and the transport coefficients can be computed from small (linearised)
fluctuations about these solutions.

Starting with the work of Policastro, Son and Starinets [24], there have been several
fascinating studies over the last few years, that have computed fluid mechanical transport
coefficients from gravity (see the review [25] and the references therein). In this dissertation,
we will be doing the reverse. We are going to use the properties of the fluid found in this
way to construct fully non-linear, non-static solutions of fluid mechanics and use these to
study non-static black objects on the gravitational side of the duality indirectly.

There is another context in which black holes can be described by fluid mechanics,
the membrane paradigm (see [26] and references therein and [27, 28]), where one replaces
the interior of the black hole with a dissipative membrane living at the horizon. This is
conceptually different from our approach. For some of the complicated black objects we
will discuss, the metric of the space the membrane lives on will be very complicated and
need not even have the same topology as the spaces where our fluids will live.

Inspired by the membrane paradigm (but not using it) there has been some recent
work using an analogy between black holes and fluid droplets [29–31]. In that approach one
replaces the interior of the black hole with a fluid droplet with a surface at the horizon.
In our approach the fluid lives in a lower dimensional space than the black hole and the
horizon corresponds to all of the fluid, not just the surface. We emphasise that our approach
is more than just an analogy, in the context of asymptotically locally AdS black holes we
are proposing a precise correspondence with a clear regime of validity.

1.1 Higher dimensional gravity

In four dimensions, Hawking’s topology theorem [17, 18] states that all stationary
black holes must have horizons with spherical topology and be rotationally invariant. The
uniqueness theorem for vacuum black holes (i.e. without any electromagnetic fields or other
matter) also tells us that, for a given energy and angular momentum, the rotating Kerr
black hole is the only solution.

Once we go to higher dimensions, things become more interesting. The higher
dimensional generalisation of the topology theorem [32, 33] states that the horizon must
be of positive Yamabe type, i.e. they must admit metrics of positive scalar curvature. It
is unclear what the complete list of topologies that satisfy this condition are and it is
unlikely that all topologies that satisfy this condition can actually be realised as solutions
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Figure 1.1: Phase diagram of black objects in five dimensions, plotting entropy vs. angular
momentum at fixed energy.

to Einstein’s equations. One set of topologies that are allowed are products of spheres.
The theorem also appears to allow discrete quotients of spheres as well, but these are not
expected to exist when we keep the topology of the asymptotic region fixed as a sphere.

In five dimensions there is an explicit example of a new topology – the black ring
of Emparan and Reall [20] with horizon topology S1 × S2. This solution also demonstrates
that the uniqueness theorem does not generalise to higher dimensions – there is a range of
energies and angular momenta for which there are three different solutions: the Myers-Perry
black hole [34], the small black ring and the large black ring. We have plotted the phase
diagram in fig.1.1.

When we go to higher dimensions, the problem becomes much more difficult. In
five dimensions, as well as the time-like isometry there are two rotational isometries,so the
problem is effectively 2 dimensional. The maximum number of isometries we can expect
in D dimensions is 1 time-like and

[
D−1

2

]
rotational (one for each independent plane of

rotation),1 so the problem is effectively
[
D
2

]
dimensional. Once this becomes 3 or larger,

the collection of solution generating techniques becomes much weaker.
The only exact solution in 6 or more dimensions is the Myers-Perry rotating black

hole. There is also an approximate construction of black rings [22] and other objects [35]
that require the size of one of the spherical components to be much larger than the others. In
addition, there is a qualitative argument that there must be black holes with wavy horizons
[36] but there is not even an approximate construction. Two proposed phase diagrams
are presented in fig.1.2, the first of these appeared in [22] and the second appeared in an
unpublished earlier draft of that paper [37]. The features of the two proposals that are the
same (black holes joining onto wavy black holes joining onto black rings. . . ) are the only
features that are robust. The issue of what the correct phase diagram is will be one of the
problems that we will begin to address with our fluid mechanical methods.

The instabilities of extended black objects has been one of the most controversial
subjects ever since they were proposed by Gregory and Laflamme [38, 39], in particular
the question of their endpoint (see [40] for a review). Below a critical dimension, it is
thermodynamically favourable for a black string to split into an array of black holes (if we

1Here, we use the notation [x] to denote the integer part of the real number x. Note that the theorems
only guarantee one rotational isometry. All known solutions have

[
D−1

2

]
of them. It is still an open question

whether or not there are any stationary solutions with fewer than this number.
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Figure 1.2: Possible phase diagrams of black objects in D ≥ 6 dimensions.

compactify the extended direction on a circle, this only occurs if the length of the circle is
larger than some multiple of the radius of the black string). However, the bifurcation of the
horizon cannot take place without naked singularities [18, 41]. It has also been suggested
that the pinching process would take an infinite amount of time and that the final state is
a wavy black string [42].

The appropriate method to resolve these questions in gravity should be numerical
simulations. However, as the pinch is approached the curvatures become large and the
simulations break down. If we extrapolate past this breakdown, these suggest that the final
state is a black hole, and not an wavy string [43, 44].

The appearance of instabilities when one adjusts a parameter has another inter-
esting consequence. In the stable parameter range the frequency satisfies ω2 > 0, in the
unstable range we have ω2 < 0. Therefore, at the critical value of the parameter we have
ω = 0, i.e. we have a zero mode. If we turn on this zero mode we should move off on a
new branch of solutions. In the case of the Gregory-Laflamme instability this new branch
of solutions are wavy strings, which have been constructed numerically [45, 46].

Due to the complicated nature of these questions in the gravitational setting, it
is worth seeing if we can get any insight into these questions using our holographic fluid
mechanics approach.

1.2 Conformal fluids and anti de Sitter space

Before we go on to study fluid mechanical duals of the gravitational physics de-
scribed above, it is useful to test out our ideas in a setting where we can perform the
calculations on both sides of the duality and check that they agree. Such a setting is
provided by rotating black hole solutions in global anti de Sitter space.

All theories of gravity on an AdSD background are expected to admit a dual
description as a conformal field theory on SD−2× time [4, 6]. Putting this together with the
fact that quantum field theories at sufficiently high energy density and long wavelengths are
expected to admit an effective description in terms of fluid dynamics, we propose that large,
rotating black holes in arbitrary global AdSD spaces admit an accurate dual description as
rotating, stationary configurations of a conformal fluid on SD−2. One could regard the
agreement between fluid dynamics and gravity described below as a test of the AdS/CFT
correspondence, provided we are ready to assume in addition the applicability of fluid
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mechanics to quantum field theories at high density.
Assuming our proposal is indeed true, we are able to derive several properties of

large rotating AdS black holes in Ch.3 as follows: We first read off the thermodynamic
equation of state of the dual fluid from the properties of large, static, non-rotating AdS
black holes. Inputting these equations of state into the relativistic Navier-Stokes equations,
we are then able to deduce the thermodynamics of large rotating black holes.

Consider a theory of gravity coupled to a gauge field (based on a gauge group
of rank c) on AdSD. In an appropriate limit, the boundary theory is effectively described
by conformal fluid dynamics with c simultaneously conserved, mutually commuting U(1)
charges Ri (i = 1 . . . c).

When we input this equation of state into the relativistic Navier-Stokes equations,
we are able to construct a set of stationary solutions. These solutions are simply the
configurations into which any fluid initial state eventually settles down in equilibrium. These
solutions turn out to be universal (i.e. they are independent of the detailed form of the
equation of state and the transport coefficients). Their thermodynamics is incredibly simple;
it is summarised by the partition function

lnZgc(T, µ,Ω) = ln Tr exp
[
−(E − µiRi − ΩaLa)

T

]
=

lnZgc(T, µ, 0)∏
a(1− Ω2

a)
, (1.1)

where E is the energy, Ri and µi are the c commuting charges and chemical potentials
respectively and La and Ωa represent the angular momenta and the angular velocities of
the fluid respectively.

We now turn to the gravitational dual interpretation of the fluid mechanics solu-
tions we have described above. A theory of a rank c gauge field, interacting with gravity on
AdSD, possesses a c + n + 1 parameter set of black hole solutions, labelled by the energy,
angular momentum and electric charges. We propose that these black holes (when large)
are dual to our solutions of fluid dynamics. Our proposal yields an immediate prediction for
the thermodynamics of large rotating black holes: the grand canonical partition function of
these black holes must take the form of (1.1).

We have tested the thermodynamic predictions described above on every class of
black hole solutions in AdSD spaces that we are aware of. In the strict fluid dynamical limit,
the thermodynamics of each of these black holes exactly reproduces2 (1.1). The agreement
described in this paragraph occurs only when one would expect it to, as we now explain.

The equations of fluid mechanics assume that the fluid is in local thermodynamic
equilibrium at each point in space, even though the energy and the charge densities of the
fluid may vary in space. Fluid mechanics applies only when the length scales of variation
of thermodynamic variables – and the length scale of curvatures of the manifold on which
the fluid propagates – are large compared to the equilibration length scale of the fluid, a
distance we shall refer to as the mean free path, lmfp, although the terminology of kinetic
theory is not really appropriate for these strongly coupled theories.

As we will see, the most stringent bound comes from requiring that lmfp be small
compared to the radius of the Sd−1. In every case we have studied, it turns out that this

2See, however, §3.5.8 for a puzzle regarding the first subleading corrections for a class of black holes in
AdS5.
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condition is met whenever the horizon radius (in Boyer-Lindquist coordinates), r+, of the
dual black hole is large compared to the AdS radius , RAdS.

It follows that we should expect the Navier-Stokes equations to reproduce the
thermodynamics of only large black holes. In all the cases we have studied, this is indeed
the case. It is possible to expand the formulae of black hole thermodynamics (and the
stress tensor and charge distribution) in a power series in RAdS/r+. While the leading
order term in this expansion matches the results of fluid dynamics, we find deviations from
the predictions of Navier-Stokes equations at subleading orders.

Since [1] was published the explicit dictionary between solutions of fluid mechanics
and solutions of general relativity in a derivative expansion has been established in [47].
Whilst the AdS/CFT correspondence guaranteed that this would work, we now have an
explicit demonstration of this fact. This means that we now have a guarantee that this
relation between rotating fluids on spheres and rotating AdS black holes was guaranteed to
work without relying on the AdS/CFT conjecture. Nevertheless, it is nice to have a simple
confirmation of this fact.

1.3 Plasmaballs

When we look at conformal theories, as in the previous section, we cannot create
fluid configurations dual to the interesting black objects described in §1.1. We can only
talk about fluids that fill the space, so we are always working with horizons with the same
topology as the boundary. When we consider fluids in flat space we are always studying
black branes, when we consider fluids on spheres we are always studying spherical black
holes. We could look at black strings by putting the fluid on R×Sn, but such black strings
do not exhibit the Gregory-Laflamme instability [48]. To study the interesting features of
higher dimensional gravity mentioned above, we will have to do something a little different.

Consider a theory of gravity in D dimensions with a negative cosmological constant
Λ = − (D−1)(D−2)

2R2
AdS

. Suppose we pick boundary conditions at infinity that tend to Poincaré

AdS with one dimension compactified on a circle of radius Tc
−1 with all fermionic fields

antiperiodic(a Scherk-Schwarz circle). We will refer to these spaces as SSAdSD. This arises
as the near horizon limit of stacks of Scherk-Schwarz compactified D3, M2 and M5 branes.
This gravitational theory is dual to the Scherk-Schwarz compactification of a large N ,
strongly coupled, D−1 dimensional conformal theory. Using the gravity side, one can show
that the result is a confining theory with a first order confinement/deconfinement transition
at temperature T = Tc [49].

The low temperature confining phase is dual to a gas of supergravitons on the so
called AdS soliton background:

ds2 =
R2

AdS

z2

(
−dt2 + FTc(z) dθ2 + dx2

i +
1

FTc(z)
dz2

)
, (1.2)

where i = 1, · · · , D − 3, θ ∼ θ + Tc
−1, and

Fa(z) = 1−
(

4πaz
D − 1

)D−1

. (1.3)
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Notice that, at small z, Fx(z) ' 1, so (1.2) reduces to AdSD in Poincaré-patch coordinates,
with z as the radial coordinate and with one of the spatial boundary coordinates, θ, com-
pactified on a circle (the remaining boundary coordinates, xi and t, remain non-compact).
At z = D−1

4πTc , the physical size of the θ circle goes to zero. This happens in the same way as
the origin of polar coordinates and space stops here.

The high temperature phase of the same system (at temperature T ) is dual to the
the black brane

ds2 =
R2

AdS

z2

(
−FT (z) dt2 + dθ2 + dx2

i +
1

FT (z)
dz2

)
. (1.4)

The thermodynamics of the high temperature phase are determined in the bulk description
by the usual constitutive equations of black brane thermodynamics [50]

P =
α

Tc

(
T D−1 − Tc

D−1
)
, where α =

4D−3πD−2RD−2
AdS

(D − 1)D−1GD
. (1.5)

For T > Tc the free energy density (the negative of the pressure) is negative, and so (in
the large N limit) is smaller than the O(N0) free energy of the ‘confined’ gas of gravitons.
Consequently, the system undergoes a deconfinement phase transition at temperature Tc.

With this equation of state the pressure can go to zero at finite energy density.
This allows the existence of another type of fluid configuration – finite lumps of deconfined
fluid separated from the confined phase by a domain wall – the plasmaballs of [50]. At the
surface, the density drops rapidly, so fluid mechanics is not valid there. However, there is a
standard way to deal with this problem in fluid mechanics – one replaces the domain wall
with a delta function localised surface tension.

In order for the surface tension approximation to be valid, it is important that the
size of the plasmaball be much larger than the thickness of the surface. When we increase
the size of the plasmaball we decrease the curvature of the surface and therefore we decrease
the pressure of the fluid. To stay in the regime of fluid mechanics, it is important that the
density does not also become small when we do this, so it is essential that we have an
equation of state that allows the pressure to vanish at finite energy density. This requires a
first order phase transition and cannot happen for the conformal theories discussed in §1.2.

It is worth noting that this demonstrates the power of phrasing the calculation in
the language of fluid mechanics. In the case of the conformal theories described in §1.2 we
now know how to formulate the derivative expansion of fluid mechanics purely in bulk terms
[47]. In some sense, we do not gain very much from the AdS/CFT duality. It saves us from
integrating the equations of motion in the radial direction and we knew it was going to work
before the calculations of [47], but we don’t get a calculating technique that we could not
have found any other way. However, once we bring surfaces into the game things change.
We have to face situations where gradients are large and a simple derivative expansion
won’t capture everything. But, once we rephrase it in the language of the dual field theory,
we can make use of a couple of hundred years worth of experience in fluid mechanics and
realise that we can deal with the problem by using the surface tension approximation. Note
that even the zeroth order domain wall solution required some serious numerical relativity,
trying to go beyond this flat domain wall on the gravity side would be an extremely difficult
task.
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We have drawn this setup schematically in fig.1.3. In that diagram Hawking
radiation emitted in the vertical direction will see the AdS “boxing” effect and will bounce
back, equilibriating with the black hole. On the other hand, Hawking radiation emitted in
the horizontal direction will not see this “boxing” effect and will escape to infinity, much
like in flat space. In many ways plasmaballs are an intermediate between asymptotically flat
and large AdS black holes. They have the large AdS property of having an easily identifiable
holographic dual, but they have the asymptotically flat property of negative heat capacity
and eventual evaporation. Note that as we increase the number dimensions, the flat-like
directions outnumber the AdS-like directions more and more. We might expect plasmaballs
to behave less like large AdS black holes and more like asymptotically flat black holes as
we increase the number of dimensions.

AdS solitonBlack brane

Boundary

AdS soliton

Figure 1.3: Schematic description of the bulk dual of a plasmaball.

In the infinite radius limit the plasma ball reduces to a flat surface separating
two half planes of the confined and deconfined phases. In this limit, the authors of [50]
constructed the gravity solution numerically and used it to compute the surface tension. We
will use this surface tension to construct fluid configuration dual to the exotic black objects
discussed in §1.1 and study their properties, in the same spirit that we use the equation of
state and transport coefficients computed from gravity as described in §1.2. Unfortunately,
we only know the surface tension strictly in the infinite radius limit, corresponding to the
temperature T = Tc. We do not know what its temperature dependence is, so we will be
forced to pretend that it is independent of temperature.

At temperatures close to Tc, the microscopic length scale of the fluid is of similar
size to the Scherk-Schwarz circle, so it would not be valid to use fluid mechanics in D − 1
dimensions. We will deal with this by truncating to d = D − 2 dimensions – we will
restrict attention to fluid configurations that have no variation or velocity components in
the direction of this circle.

Now by the AdS/CFT correspondence finite energy localized non-dissipative con-
figurations of the plasma fluid in the deconfined phase is dual to stationary black objects
in the bulk. Thus, by studying fluid configurations that solve the d dimensional relativistic
Navier-Stokes equation we can infer facts about the black objects in SSAdSd+2 [2, 51].

The horizon topology can be inferred as follows. Far outside the region corre-
sponding to the plasma, the bulk should look like the AdS-soliton. In this configuration the
Scherk-Schwarz circle contracts as one moves away from the boundary, eventually reaching
zero size and capping off spacetime smoothly. Deep inside the region corresponding to the
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plasma, the bulk should look like the black brane. In this configuration the Scherk-Schwarz
circles does not contract, it still has non-zero size when one reaches the horizon. It fol-
lows that as one moves along the horizon, the Scherk-Schwarz circle must contract as one
approaches the edge of the region corresponding to the plasma. The horizon topology is
found by looking at the fibration of a circle over a region the same shape as the plasma
configuration, contracting the circle at the edges [2, 50]. We have provided a schematic
drawing of this in fig.1.4.

Boundary

Black brane AdS solitonAdS soliton

Scherk-Schwarz circle

Figure 1.4: Schematic description of circle fibres for a plasmaball.

The simplest example of this is d = 1 + 1. The only finite sized fluid configuration
we can make is a line interval, B1. When we fibre a circle over this, we get the sphere, S2.
Not that we cannot give this black hole any angular momentum, to do that we would have
to let the fluid move on the Scherk-Schwarz circle, which we cannot do within the regime
of validity of our approximations. In general, in D dimensions, when there are n =

[
D−1

2

]
independent angular momenta we will only be able to turn on n− 1 of them. As we cannot
explore the full parameter space, we cannot use this method to rule out the existence of
any black hole topologies, we can only rule them in.

In Ch.4 we will look at the case d = 3, D = 5 in great detail. We will construct
spinning disc solutions dual to black holes an spinning annuli (plasmarings) dual to black
rings. The phase diagram that results is shown in fig.1.5. The fact that this has some
similarity with fig.1.1 suggests that this method could provide useful suggestions for the
phase diagram in higher dimensions. We will also analyse the stability of these solutions to
small fluctuations in Ch.5.

In Ch.6 we will turn to the construction of spinning fluid solutions in d = 4, D = 6.
We again find plasmaball and plasmaring solutions, including wavy ball solutions that could
correspond to the wavy black holes mentioned in §1.1. We have plotted the surface of a few
examples in fig.1.6. We will not perform an analysis of their thermodynamics – that was
performed in [51] including a phase diagram that looks quite similar to the second one in
fig.1.2. We see that the methods discussed in this dissertation have led to a strong indication
of which is the correct phase diagram for black holes and rings in higher dimensions.
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BallS̃

L̃

Figure 1.5: Phase diagram for plasmaballs and plasmarings in d = 3.

Figure 1.6: Spinning ball and ring solutions.



Chapter 2

Fluid mechanics

In this chapter, we will review the general formalism we will use in the rest of this
dissertation: the thermodynamics of fluids, relativistic fluid mechanics and the relativistic
treatment of surface tension. In §2.4 we will discuss the construction of equilibrium con-
figurations of fluids and their overall thermodynamics. Our treatment of relativistic fluid
mechanics is largely based on [52].

2.1 Thermodynamics

The first law of thermodynamics for a fluid with c conserved (global) charges is

dE = T dS − PdV + mi dRi, (2.1)

where E is its energy, S is its entropy, V is its volume, Ri is its ith conserved charge, T is
its temperature, P is its pressure and mi is its ith chemical potential. In a non-relativistic
theory particle number could be one of the conserved charges, but in a relativistic theory
we have to replace it with something like baryon number, or in this case R-charge. Suppose
we rescale the system by a factor (1 + ε). Extensivity tells us that dE = εE , dS = εS,
dV = εV and dRi = εRi. Then (2.1) tells us that

E = T S − PV + miRi.

Defining intensive quantities ρ = E/V , s = S/V and ri = R/V , we have

ρ+ P = sT + miri,

dρ = T ds+ mi dri,

dP = s dT + ri dmi.

(2.2)

Note that all intensive thermodynamic quantities can be written as functions of (1 + c)
variables, which we will usually choose to be the temperature and chemical potentials.
Once we are given the pressure as a function of temperature and chemical potential, we can
use (2.2) to determine the others. In Ch.3 we will consider conformal fluids, which have
equations of state of the form (3.3). In Ch.4-6 we will consider uncharged fluids that are
dual to Scherk-Schwarz compactifications of AdS that have equations of state of the form
(4.7).

11
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2.2 Relativistic fluid mechanics

A fluid static fluid can be described by specifying its rest frame (which can be
described by a vector uµ that takes the form uµ = (1, 0, 0, . . . ) in that rest frame) and
by specifying the the temperature, T , and chemical potentials, mi. All other intensive
properties of the fluid can be computed using (2.2). It is useful to let (T ,mi) refer to these
quantities as measured in the rest frame – this means that they are Lorentz scalars, which
is convenient when we construct Lorentz covariant equations of motion.

Now consider a fluid that is disturbed from equilibrium. Provided all length scales
of variation are large compared to the thermalisation scale of the fluid (which we call
lmfp), each patch of the fluid is well described by equilibrium thermodynamics in its rest
frame. The fluid is characterised by the velocity of these patches (described by a vector
uµ(x) = γ(x)(1, ~v(x)) where γ = (1 − ~v2)−1/2 is a normalisation factor) and the intensive
thermodynamic quantities in their rest frames (which can all be computed from the proper
temperature, T (x), and proper chemical potentials, mi(x)). We promote the quantities
mentioned in the previous paragraph to fields. As long as these quantities vary slowly, we
can write equations of motion for them in a derivative expansion. One would expect the
length scale associated with this expansion to be the scale of microscopic physics, lmfp.

The equations of fluid dynamics are simply a statement of the conservation of the
stress tensor Tµν and the charge currents Jµi .

∇µTµν = 0 ,
∇µJµi = 0 .

(2.3)

These provide (d + c) equations for the evolution of for the (d + c) quantities ~v(x), T (x)
and mi(x) once we write the stress tensor and charge currents in terms of these quantities.

It is also convenient to define an entropy current JµS that describes the density
and flux of entropy. This is not an independent object, there are no equations of motion
associated to its conservation and the current itself is determined by the stress tensor and
charge currents. In fact, its divergence gives the rate of entropy production per unit volume.
Demanding that this is positive will impose restrictions on the form of the stress tensor and
charge currents.

2.2.1 Perfect fluid stress tensor

The dynamics of a fluid is completely specified once the stress tensor and charge
currents are given as functions of T , mi and uµ. As we have explained in the introduction,
fluid mechanics is an effective description at long distances. As a consequence it is natural
to expand the stress tensor and charge current in powers of derivatives. In this subsection
we briefly review the leading (i.e. zeroth) order terms in this expansion.

It is convenient to define a projection tensor

Pµν = gµν + uµuν . (2.4)

This tensor projects vectors onto the (d − 1) dimensional subspace orthogonal to uµ. In
other words, Pµν may be thought of as a projector onto spatial coordinates in the rest frame
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of the fluid. In a similar fashion, −uµuν projects vectors onto the time direction in the fluid
rest frame.

To zeroth order in the derivative expansion, Lorentz invariance demands that the
stress tensor be a linear combination of the two projection tensors mentioned above and
that the currents are proportional to the velocity with scalar coefficients. The correct static
limit uniquely determine these coefficients in terms of the thermodynamic variables. We
have

Tµνperfect = ρ(T ,m)uµuν + P(T ,m)Pµν ,

Jµi,perfect = ri(T ,m)uµ,

JµS,perfect = s(T ,m)uµ,

(2.5)

where all thermodynamic quantities are measured in the local rest frame of the fluid, so that
they are Lorentz scalars. It is not difficult to verify that in this zero-derivative (or perfect
fluid) approximation, the entropy current is conserved. Entropy production (associated
with dissipation) occurs only at the first subleading order in the derivative expansion, as
we will see in the next subsection.

2.2.2 Dissipation and diffusion

Now, we proceed to examine the first subleading order in the derivative expansion.
As there is no entropy production when we truncate the derivative expansion to zeroth order,
this will be the leading contribution to some questions.

Before we do this, it is useful to think about the physical interpretation of various
components of the stress tensor. First of all, consider uµuνTµν . In the rest frame of the
fluid this would be T tt. In other words, it is the energy density in the rest frame which we
have already defined as ρ, i.e. ρ = uµuνT

µν .
Next, consider qµ = −PµνuλT λν . In the rest frame of the fluid these are the T tx

components, which are physically interpreted as momentum density or energy flux. Energy
flow in the rest frame of the fluid will only result from thermal conductivity, and the inertia
of flowing heat will lead to some momentum density in the rest frame. So we interpret qµ

as heat flux.
Finally, consider Sµν = PµλPνσT

λσ. In the rest frame of the fluid these are the
T xy components. These have the physical interpretation of force per unit area in the fluid
rest frame.

We can write
Tµν = ρuµuν + qµuν + uµqν + Sµν . (2.6)

Similarly, we have the charge density, ri = −uµJµi , and the diffusion current,
jµi = Pµν Jνi , and

Jµi = riu
µ + jµi . (2.7)

Now, when there is energy flow or charge flow there must also be entropy flow, as
given by the second line of (2.2). This tells us that we must have

JµS = suµ +
qµ −mij

µ
i

T
. (2.8)
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It is also helpful to separate velocity gradients into the pieces that are orthogo-
nal/parallel to the velocity and into the antisymmetric/symmetric traceless/trace pieces:

∇µuν = −uµaν + ωµν + σµν +
1

d− 1
ϑPµν (2.9)

where

aµ = uν∇νuµ,
ϑ = ∇µuµ,

σµν =
1
2

(
Pµλ∇λuν + P νλ∇λuµ

)
− 1
d− 1

ϑPµν ,

ωµν =
1
2

(
Pµλ∇λuν − P νλ∇λuµ

)
,

(2.10)

are the acceleration, expansion, shear tensor and rotation tensor respectively.
Using the definitions of qµ and jµi and (2.2), one can show that

∇µqµ = −uµ∂µρ− ρϑ− qµaµ − Sµνσµν −
1

d− 1
SµνPµνϑ,

∇µjµi = −uµ∂µri − riϑ,

which leads to

T ∇µJµS = ϑ

(
P − 1

d− 1
PµνSµν

)
− σµνSµν −

1
T
qµ (∂µ + T aµ)− T jµi ∂µ

[µi
T

]
. (2.11)

This quantity is the rate of production of entropy per unit volume (times temperature). We
demand that this quantity is positive.

Allowing only one terms up to one derivative, this forces us to choose

qµ = −κPµν(∂νT + aνT ) ,
Sµν = PPµν − ζϑPµν − 2ησµν

jµi = −DijP
µν∂ν

[mj

T

]
,

(2.12)

These equations define a set of new fluid dynamical parameters in addition to those of
the previous subsection: ζ is the bulk viscosity, η is the shear viscosity, κ is the thermal
conductivity and Dij are the diffusion coefficients (they are related to the usual diffusion
coefficients by a factor of ∂

∂ri

[mj
T
]
). All of these parameters are functions of (T ,mi), the

precise dependence will depend on which fluid we are talking about. Fourier’s law of heat
conduction ~q = −κ~∇T has been relativistically modified with an extra term that is related
to the redshifting of the temperature. The diffusive contribution to the charge current is
the relativistic generalisation of Fick’s law.

To summarise, we have

Tµνdissipative = −ζϑPµν − 2ησµν + qµuν + uµqν ,

(Jµi )dissipative = jµi ,

(JµS )dissipative =
qµ −mij

µ
i

T
.

(2.13)
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where

qµ = −κPµν(∂νT + aνT ) ,

jµi = −DijP
µν∂ν

[mj

T

]
,

(2.14)

we also have
T ∇µJµS = ζϑ2 + 2ησµνσµν +

qµqµ
κT

+ T (D−1)ijjµi jjµ. (2.15)

As qµ, jµi and σµν are all spacelike vectors and tensors, the RHS of (2.15) is positive provided
η, ζ, κ and D are positive parameters, a condition we further assume. This establishes that
(even locally) entropy can only be produced but never destroyed. In equilibrium, ∇µJµS
must vanish. It follows that, qµ, jµi , ϑ and σµν each individually vanish in equilibrium.

For fluids with gravity duals, the shear viscosity is given by η = s
4π [25]. We can

estimate the thermalisation length of the fluid by comparing coefficients at different orders
in the derivative expansion

lmfp ∼
η

ρ
=

s

4πρ
. (2.16)

This length scale may plausibly be identified with the thermalisation length scale of the
fluid. This may be demonstrated within the kinetic theory, where lmfp is simply the mean
free path of colliding molecules, but is expected to apply to more generally to any fluid with
short range interactions.

When studying fluids on curved manifolds (as we will proceed to do in Ch.3),
one could add generally covariant terms, built out of curvatures, to the stress tensor. For
instance, we could add a term proportional to Rµν to the expression for Tµν . We will
ignore all such terms in this dissertation for a reason we now explain. In all the solutions
of fluid mechanics that we will study, the length scale over which fluid quantities vary is at
least as large as the length scale of curvatures of the manifold. Any expression built out
of a curvature contains at least two spacetime derivatives of the metric; it follows that any
contribution to the stress tensor proportional to a curvature is effectively at least two orders
subleading in the derivative expansion, and so is negligible compared to all the other terms
we have retained.

2.2.3 Definitions of velocity

So far, we have been vague regarding precisely what we mean by the velocity, uµ.
We stated that it was the velocity of the rest frame of the fluid without specifying the
rest frame. In this section we will discuss various definitions of velocity. Changes in the
definition of velocity will change the transport coefficients. Note that this is not a gauge
invariance – there is no ambiguity in the evolution of the velocity, these field redefinitions
change the equations of motion.

If one views fluid mechanics as a phenomenological theory, designed to describe the
results of experiments where one can measure properties of the fluid directly, the velocity
should not be defined abstractly. The velocity can be measured directly, e.g. by inserting
probe particles and watching them or putting small turbines in the fluid. The method of
measuring the velocity provides the definition. One determines the transport coefficients
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by performing a few experiments and uses these to make predictions for other situations.
In writing down the equations of fluid mechanics, one should leave the precise definition of
velocity ambiguous, as the measurements of transport coefficients will fix this.

However, when one tries to derive the equations of fluid mechanics, with expres-
sions for the transport coefficients, from a microscopic theory (or a gravity dual!) one needs
an abstract definition of velocity so that one has a microscopic notion of rest frame. Two
popular definitions are due to Landau [53] – the velocity of energy flow – and Eckart [54] –
the velocity of charge flow.

The Landau definition boils down to

qµLandau = −uλPµνTλν = 0,

=⇒ uµLandau = uµ +
qµ

ρ+ P
,

jµi,Landau = jµi −
ri

ρ+ P
qµ ,

(2.17)

with the correction to Sµν being second order in derivatives. Essentially, one reabsorbs
thermal conductivity into a redefinition of velocity.

In contrast, the Eckart definition boils down to

jµi,Eckart = PµνJiν = 0,

=⇒ uµEckart = uµ +
jµi
ri
,

qµEckart = qµ − ρ+ P
ri

jµi ,

(2.18)

with the correction to Sµν being second order in derivatives, again. Here one reabsorbs
diffusion into a redefinition of velocity.

We emphasise that these two abstract definitions need not agree with the velocity
that one would measure in an actual experiment. In fact, the Landau definition will disagree
when thermal conduction takes place and the Eckart definition will disagree when there is
diffusion.

In this dissertation, we are not in either of these situations. We are not trying to
describe the results of experiments and we are not trying to derive transport coefficients
from some more fundamental theory. Instead, we wish to use solutions of the equations of
fluid mechanics to make predictions for gravity. We do not have any means to measure the
velocity, but the actual value of the velocity is not important so long as the equations are
consistent. We are free to pursue either approach – use an abstract definition of velocity or
leave it ambiguous.

We will choose to leave the velocity ambiguous for the following reason. As men-
tioned in the introduction, we wish to make as much use as possible of our physical intuition
for fluids. Thermal conductivity and diffusion are both physically intuitive effects and we
don’t want to spoil our intuition by removing thesm with a funny choice of variables.

One can imagine situations where either of the two abstract definitions of velocity
would lead to unintuitive descriptions of the physics. For example, consider two parallel
infinite plates held at different temperatures with the region between them filled with water.
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Clearly there will be heat flow from the hotter plate to the colder one. If we used the Landau
definition of velocity, we would have to say that water is flowing from one plate to the other.
For this to make sense, water would have to be created at one plate and destroyed at the
other. This is clearly an unphysical description of this situation.

2.3 Surfaces

The plasmaball configurations we will consider in Ch.4-6 have a domain wall sep-
arating a bubble of the deconfined phase from the confined phase. As the density, pressure,
etc. of the deconfined phase are a factor of N2 larger than the confined phase, we can treat
the confined phase as the vacuum and the domain wall as a surface bounding the deconfined
fluid.

At surfaces, the density of the fluid changes too rapidly to be described by fluid
mechanics. However, provided that we look at length scales much larger than the thickness
of the surface, we can replace this region by a delta function localised piece of the stress
tensor. At these length scales, this stress tensor will depend on the direction of the surface,
with dependance on its curvature being suppressed.

In general, introducing a surface energy density σE , a surface entropy density σS
and a surface tension σ, surface R-charge densities σRi , considerations similar to those
leading to (2.2) lead to

σE = σ + T σS + mi σRi ,

dσE = T dσS + midσRi .
dσ = −σS dT − σRidmi.

However, the surface tension was only computed at the phase transition T = Tc, mi = 0 in
[50], so we will have to ignore its temperature and chemical potential dependence. As we
can see above, this is equivalent to setting σS = σRi = 0 and σE = σ.

Let’s describe the location of the surface by a function f(x) that is positive inside
the fluid and has a first order zero on the surface.

Tµν = θ(f)Tµνfluid + δ(f)Tµνsurface. (2.19)

At large length scales, as mentioned above, Tµνsurface will only depend on the first derivative
of f and no higher derivatives.

If we demand invariance under reparameterisations of the function f(x), which
can be expressed as f(x) → g(x)f(x) with g(x) > 0, and that the surface moves at the
velocity of the fluid

uµ∂µf |f=0 = 0, (2.20)

the most general surface stress tensor we can have is (see §2.3 of [2])

Tµνsurface = [Anµnν +Buµuν + C (uµnν + nµuν) +Dgµν ]
√
∂f ·∂fδ(f) .

where nµ = −∂µf/
√
∂f ·∂f is the outward pointing unit normal to the surface.
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We can fix A,B,C,D by looking at a fluid at rest, uµ = (1, 0, 0, . . .), with a surface
f(x) = x

Tµνsurface =

B −D −C 0
−C A+D 0
0 0 D

 δ(x) =

σE 0 0
0 0 0
0 0 −σ

 δ(x).

This gives
Tµνsurface =

√
∂f ·∂f [σEuµuν − σ(gµν − nµnν + uµuν)] , (2.21)

Note that (∂µf)Tµνsurface = 0.
If we take the surface tension to be constant, as discussed above, we get

Tµνsurface = −σhµν
√
∂f ·∂f, (2.22)

where hµν = gµν − nµnν is the induced metric of the surface.
The factor of

√
∂f ·∂f also has a simple interpretation: suppose we use a coordinate

system where f is one of the coordinates. Then√
∂f ·∂f =

√
gff =

√
deth
det g

, (2.23)

which provides the correct change of integration measure for localisation to the surface. If
we used some other coordinates, there’d be an extra Jacobian factor.

We have

∇µTµν = θ(f)∇µTµνfluid + δ(f)(∂µf)Tµνfluid + δ(f)∇µTµνsurface. (2.24)

So, in addition to the equation of motion (2.3), we also have the boundary conditions

(∂µf)Tµνfluid +∇µTµνsurface

∣∣∣∣
f=0

= 0. (2.25)

Also, when we take the surface tension to be constant:

∇µTµνsurface = σ

[
�f

(∂f ·∂f)1/2
− (∂µf)(∂λf)∇µ∂λf

(∂f ·∂f)3/2

]
∂νf = −σΘ ∂νf, (2.26)

where Θ is the trace of the extrinsic curvature of the surface, as seen from outside the fluid
(see §2.A).

If we have several disconnected surfaces, it is convenient to make the separation
f =

∏
i fi. As the surfaces are disconnected, the zero sets of the fi do not intersect. Also,

the fi are all positive inside the fluid. Therefore, whenever one of the fi is negative or zero,
all the others are positive. Luckily, (2.24) splits nicely

∇µTµν =
∏
i

θ (fi)∇µTµνfluid +
∑
i

δ(fi)
[
(∂µfi)T

µν
fluid +∇µTµνsurface(fi)

]
.

From the form of the gravity solution fig.1.3, we would expect σE/ρ to be similar
to the thickness of the surface. We can estimate it using

ξ =
σ

ρc
. (2.27)

Where ρc is the density at the phase transition.
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2.4 Rigid rotation

In this section we will show how to use the general formalism of the previous
sections to construct equilibrium configurations of fluids. We will also derive a simple
approach to studying the overall thermodynamic properties of these configurations.

2.4.1 Solutions for the interior

We want to find solutions of (2.3) that are independent of time. For this to happen,
it is essential that entropy is not being produced, which means we need to set (2.15) to zero.
This means we need velocity configurations that have zero expansion and shear. In general,
this would be a combination of a uniform boost and rigid rotation (when we consider fluids
on spheres in chapter 3 it will just be rigid rotation). We can always boost to a frame where
the centre of rotation is static and the rotation lies in the Cartan directions of the rotation
group. This gives

u = γ(∂t + Ωa∂φa), (2.28)

where Ωa are the angular velocities and ∂φa are a set of commuting rotational Killing vectors.
The important feature is that the velocity is a normalisation factor times a Killing vector:

uµ = γKµ, γ2KµKµ = −1, ∇(µKν) = 0. (2.29)

One can deduce that

ϑ = σµν = 0, uµ∂µγ = 0, aµ = −∂µγ
γ

.

Which leads to

qµ = −κγPµν∂ν
[
T
γ

]
, jµi = −DijP

µν∂ν

[mj

T

]
.

One can also show that

∇µTµνperfect =γ
(
sP νµ +

{
T
(
∂s

∂T

)
+ mi

(
∂ri

∂T

)}
uνuµ

)
∂µ

[
T
γ

]
+ γ

(
riP

νµ +
{
T
(
∂s

∂mi

)
+ mj

(
∂rj

∂mi

)}
uνuµ

)
∂µ

[
mi

γ

]
,

∇µJµi,perfect =γ
(
∂ri

∂T

)
uµ∂µ

[
T
γ

]
+ γ

(
∂ri

∂mj

)
uµ∂µ

[
mj

γ

]
So the velocity configuration (2.28) will be an equilibrium solution to the equations of
motion provided that

T
γ

= T = constant,
mi

γ
= µi = constant,

mi

T
= νi =

µi
T

= constant. (2.30)

Using the equation of state and (2.2), this determines all of the intensive thermodynamic
quantities in the fluid.
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2.4.2 Solutions for surfaces

The fluid configurations described in the previous subsection have Tµνdissipative = 0.
Therefore

(∂µf)Tµνfluid = (∂µf)Tµνperfect = P∂νf.

This means that (2.25) and (2.26) reduce to

P|f=0 = σΘ. (2.31)

As the pressure is determined by (2.30), this provides a differential equation that deter-
mines allowed positions of surfaces. Demanding that the surface has no conical singularities
turns out to provide enough boundary conditions to determine the position of the surface
completely (up to discrete choices) in terms of the parameters Ωa, T and µi.

2.4.3 Thermodynamics of solutions

We compute the extensive thermodynamic properties of these solutions by integrat-
ing the time components of the corresponding currents (noting that the current associated
with a Killing vector ζµ is Jµζ = Tµνζν):

QX =
∫

dV J0
X . (2.32)

In particular, also noting that for equilibrium configurations ∂0f = 0,

Qζ =
∫

dV θ(f)
[
(ρ+ P)γ2K0K ·ζ + Pζ0

]
−
∫

dV δ(f)
√
∂f ·∂fσζ0. (2.33)

Noting that K0 = (∂t)0 = 1 and (∂φa)0 = 0, this gives

E = −Q∂t = −
∫

dV θ(f)
[
(ρ+ P)γ2K ·∂t + P

]
+
∫

dV δ(f)
√
∂f ·∂fσ,

La = Q∂φa =
∫

dV θ(f)
[
(ρ+ P)γ2K ·∂φa

]
,

S = QS =
∫

dV θ(f) [γs] ,

Ri = QRi =
∫

dV θ(f) [γri] .

(2.34)

From these quantities, we can compute overall angular velocities Ωa, temperature
T and chemical potentials µi thermodynamically

dE = Ωa dLa + T dS + µi dRi. (2.35)

Note that these quantities are different from the local thermodynamic properties of the fluid
in its rest frame. The quantities (T ,mi) are properties of each patch of fluid, in contrast to
(T, µi), which are properties of the entire configuration. In particular, the local temperature,
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T , only knows about the thermal energy of the plasma, whereas the overall temperature,
T , also knows about its kinetic energy.

A priori, it may not seems that these quantities have to be the same as Ωa, T and
µi from (2.28) and (2.30). However, we can show that they are the same by checking that
the quantities taken from (2.28) and (2.30) satisfy (2.35). In practice, it is easier to verify
the equivalent statement

d(E − ΩaLa − TS − µiRi) = −La dΩa − S dT −Ri dµi. (2.36)

First, making use of (2.2), we see that

E−ΩaLa−TS−µiRi = −QK−TQS−µiQRi = −
∫

dV θ(f)P+
∫

dV δ(f)
√
∂f ·∂fσ. (2.37)

Note that the second integral is simply σ times the surface area: as we saw in (2.23) the
factor of

√
∂f ·∂f provides the correct change of measure for the delta function to localise

the integral to the surface.
Consider an infinitesimal change of Ωa, T and µi. We have

dP = s d(γT ) + ri d(γµi) =
ρ+ P
γ

dγ + γsdT + γri dµi,

γ−3 dγ = K ·dK = K ·la dΩa.

From this, we see that (2.36) is satisfied by the contributions from the interior. As the right
hand side of (2.36) has no contributions from the surface, we need to check that the surface
contributions of the variation of (2.37) cancel.

The change in the surface area can be written as

dA =
∮

dA~n· ~w,

where the integral is performed over the union of the initial and final surfaces, ~n is a unit
normal vector pointing into the initial fluid and out of the final fluid and ~w is some vector
field that is equal to the outward pointing normal at both the initial and final surfaces. By
Gauss’ theorem, this can be written as

dA =
∫

dV ∇· ~w,

with the integral performed over the region between the two surfaces. The volume element
can be written as

∫
dV =

∫
dA (~n·∆x), with ~n pointing outwards. As the volume element

is already infinitesimal, we can replace ~w with the vector field described in (2.45), as the
difference would be infinitesimal, i.e. ∇· ~w → Θ. Also, as f = 0 on the initial surface, and
f + df = 0 on the final surface (df refers to the change in f due to the change in Ωa, T
and µi), we have

∂µf∆xµ +
∂f

∂Ωa
dΩa +

∂f

∂T
dT +

∂f

∂µi
dµi = 0,

=⇒ ~n·∆x =
df√
∂f ·∂f

.
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Therefore
dA =

∫
dV δ(f)Θ df.

So, we can write the surface contribution to the variation of (2.37) as

d(E − ΩaLa − TS − µiRi)surface = −
∫

dV δ(f)P df +
∫

dV δ(f)σΘ df,

which vanishes due to (2.31).
The thermodynamics of the solution can be summarised by defining a grand par-

tition function

Zgc = Tr exp
(
−E − ΩaLa − µiRi

T

)
. (2.38)

In the thermodynamic limit,

−T lnZgc = E − ΩaLa − TS − µiRi,
d(T lnZgc) = La dΩa + S dT +Ri dµi.

(2.39)

We have seen that
T lnZgc =

∫
f>0

dV P −
∫
f=0

dAσ (2.40)

and the Ωa, T and µi are the same as those given by (2.28) and (2.30).

Appendices

2.A Extrinsic curvature

Suppose we have a timelike surface with unit normal vector n pointing toward us
(spacelike surfaces will require some sign differences). The induced metric on the surface is

hµν = gµν − nµnν . (2.41)

The extrinsic curvature is given by [55]

Θµν =
1
2
Lnhµν = ∇µnν . (2.42)

We have to be a little careful with the last expression. It agrees with the first expression
when projected tangent to the surface. The first expression has vanishing components
normal to the surface. The normal components of the second expression depend on how we
extend n off the surface.

The conventional choice for extending n is as follows: at each point on the surface,
construct the geodesic that passes through that point tangent to n and parallel transport
n along it. In other words

nµ∇µnν = 0. (2.43)

This ensures that the second expression in (2.42) has vanishing components normal to the
surface. The other normal component, nν∇µnν , vanishes due to the normalisation of n.
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For the surfaces given by f(x) = 0, considered in §2.3, the unit normal on the
surface is given by

nµ = − ∂µf√
∂f ·∂f

. (2.44)

However, if we used this vector away from the surface, it would not satisfy (2.43). We could
still use either expression in (2.42) with this vector — we would just have to project the
second one tangent to the surface. Alternatively, we can use

nµ = − ∂µf

(∂f ·∂f)1/2
+
[
∂νf ∇ν∂µf
(∂f ·∂f)3/2

− ∂µf ∂
λf ∂νf ∇λ∂νf

(∂f ·∂f)5/2

]
f +O(f2). (2.45)

The O(f2) terms don’t contribute to (2.42) or (2.43) on the surface. The contribution of
the O(f) terms on the surface to (2.42) are normal to the surface and ensure that n satisfies
(2.43).

Either way, on the surface, we get

Θµν = − ∇µ∂νf
(∂f ·∂f)1/2

+
∂µf ∂

λf ∇λ∂νf + ∂νf ∂
λf ∇λ∂µf

(∂f ·∂f)3/2
− ∂µf ∂νf ∂

λf ∂σf ∇λ∂σf
(∂f ·∂f)5/2

. (2.46)

As this is perpendicular to n, it doesn’t matter if we contract its indices with the full metric
gµν or the induced metric hµν . We get

Θ = Θµ
µ = − �f

(∂f ·∂f)1/2
+
∂µf ∂νf ∇µ∂νf

(∂f ·∂f)3/2
. (2.47)
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Chapter 3

Large rotating AdS black holes
from fluid mechanics

In this chapter, we predict certain universal features in the thermodynamics and
other classical properties of large rotating black holes in global AdSD spaces for arbitrary
D. Our analysis applies to black holes in any consistent theory of gravity that admits an
AdSD background; for example, IIB theory on AdS5 × S5 or M theory on AdS7 × S4 or
AdS4 × S7.

When we combine the statement that all theories of gravity on an AdSD back-
ground are expected to admit a dual description as a conformal field theory on SD−2× time
[4, 6] with the statement that quantum field theories at sufficiently high energy density ad-
mit an effective description in terms of fluid dynamics, we are led to the proposal that large,
rotating black holes in arbitrary global AdSD spaces admit an accurate dual description as
rotating, stationary configurations of a conformal fluid on SD−2.

As discussed in §1.2, we are able to derive several properties of large rotating AdS
black holes by reading off the thermodynamic equation of state of the dual ‘fluid’ from the
properties of large, static, non-rotating AdS black holes and inputting these equations of
state into the Navier-Stokes equations. We are then able to deduce the thermodynamics of
rotating black holes. In the rest of this introduction, we will describe our proposal and its
consequences, including the tests it successfully passes, in more detail.

Consider a theory of gravity coupled to a gauge field (based on a gauge group
of rank c) on AdSD. In an appropriate limit, the boundary theory is effectively described
by conformal fluid dynamics with c simultaneously conserved, mutually commuting U(1)
charges Ri (i = 1 . . . c). Conformal invariance and extensivity force the grand canonical
partition function of this fluid to take the form

lnZgc(T, µ) = V T d−1 h(µ/T ) , (3.1)

where µ represents the set of the c chemical potentials conjugate to the U(1) charges of the
fluid, V and T represent the volume and the overall temperature of the fluid respectively
and d = D − 1 is the spacetime dimensions of the boundary. As we have explained above,
the as yet unknown function h(µ/T ) may be read off from the thermodynamics of large,
charged, static black holes in AdS.

25
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The thermodynamic equation of state described above forms an input into the
relativistic Navier-Stokes equations that govern the effective dynamics of the boundary
conformal fluid. The full equations of fluid dynamics require more data than just the equa-
tion of state; for example we need to input dissipative parameters like viscosity. However,
fluid dynamics on Sd−1 admits a distinguished c+n+1 parameter set of stationary solutions
(the parameters are their energy E, c commuting charges Ri and n = rank(SO(d)) =

[
d
2

]
commuting angular momenta1 on Sd−1). These solutions are simply the configurations into
which any fluid initial state eventually settles down in equilibrium. They have the feature
that their form and properties are independent of the values of dissipative parameters.

Although these solutions are nonlinear (i.e. they cannot be thought of as a small
fluctuation about a uniform fluid configuration), it turns out that they are simple enough to
be determined explicitly. These solutions turn out to be universal (i.e. they are independent
of the detailed form of the function h(µ/T )). Their thermodynamics is incredibly simple;
it is summarised by the partition function

lnZgc(T, µ,Ω) = ln Tr exp
[
−(E − µiRi − ΩaLa)

T

]
=
V T d−1h(µ/T )∏n
a=1(1− Ω2

a)
=

lnZgc(T, µ, 0)∏n
a=1(1− Ω2

a)
,

(3.2)

where E,La and Ωa represent the energy, angular momenta and the angular velocities of
the fluid respectively.

On the gravitational side of the duality, these fluid solutions correspond to sta-
tionary black holes. A theory of a rank c gauge field, interacting with gravity on AdSD,
possesses a c+n+1 parameter set of black hole solutions, labelled by the conserved charges
described above. We propose that these black holes (when large) are dual to the solutions
of fluid dynamics described in the previous paragraph. Our proposal yields an immediate
prediction about the thermodynamics of large rotating black holes: the grand canonical
partition function of these black holes must take the form of (3.2).

Notice that while the dependence of the partition function (3.2) on µ/T is arbi-
trary, its dependence on Ωa is completely fixed. Thus, while our approach cannot predict
thermodynamic properties of the static black holes, it does allow us to predict the ther-
modynamics of large rotating black holes in terms of the thermodynamics of their static
counterparts. Further, our solution of fluid dynamics yields a detailed prediction for the
boundary stress tensor and the local charge distribution of the corresponding black hole
solution, which may be compared with the boundary stress tensor and currents calculated
from black hole solutions (read off from the black hole solutions using the AdS/CFT dic-
tionary [56–63]).

We have tested the thermodynamic predictions described above on every class of
black hole solutions in AdSD spaces that we are aware of. These solutions include the most
general uncharged rotating black holes in arbitrary AdSD space [64–66], various classes of
charged rotating black holes in AdS5× S5 [67–70], in AdS7× S4 and in AdS4× S7 [71–73].
In the strict fluid dynamical limit, the thermodynamics of each of these black holes exactly

1Here, we use the notation [x] to denote the integer part of the real number x.
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reproduces2 (3.2). In all the cases we have checked, the boundary stress tensor and the
charge densities of these black holes are also in perfect agreement with our fluid dynamical
solutions. The agreement described in this paragraph occurs only when one would expect
it to, as we now explain in detail.

Recall that the equations of fluid mechanics describe the evolution of local en-
ergy densities, charge densities and fluid velocities as functions of spatial position. These
equations are applicable only under certain conditions. First, the fluctuations about mean
values (of variables like the local energy density) must be negligible. In the situations under
study in this dissertation, the neglect of fluctuations is well justified by the ‘large N ’ limit
of the field theory, dual to the classical limit of the gravitational bulk.

Second, the equations of fluid mechanics assume that the fluid is in local thermo-
dynamic equilibrium at each point in space, even though the energy and the charge densities
of the fluid may vary in space. Fluid mechanics applies only when the length scales of vari-
ation of thermodynamic variables - and the length scale of curvatures of the manifold on
which the fluid propagates - are large compared to the equilibration length scale of the fluid,
a distance we shall refer to as the mean free path, lmfp.

The mean free path for any fluid may be estimated as [25] lmfp ∼ η
ρ where η is the

shear viscosity and ρ is the energy density of the fluid. For fluids described by a gravitational
dual, η = s

4π where s is the entropy density [25]. Consequently, for the fluids under study
in this paper, lmfp ∼ s

4πρ . As we will see in §3.2.5, the most stringent bound on lmfp, for the
solutions presented in this chapter, comes from requiring that lmfp be small compared to
the radius of the Sd−1, which we set to unity. Consequently, fluid dynamics should be an
accurate description for our solutions whenever s

4πρ � 1. In every case we have studied, it
turns out that this condition is met whenever the horizon radius, r+, of the dual black hole
is large compared to the AdS radius , RAdS. Black holes that obey this condition include
all black holes whose temperature is large compared to unity, but also includes large radius
extremal black holes in AdS5 × S5, AdS7 × S4 and AdS4 × S7. It, however, never includes
supersymmetric black holes in the same backgrounds, whose horizon radii always turn out
to be of the same order as the AdS radius.

It follows that we should expect the Navier-Stokes equations to reproduce the
thermodynamics of only large black holes. In all the cases we have studied, this is indeed
the case. It is possible to expand the formulae of black hole thermodynamics (and the
stress tensor and charge distribution) in a power series in RAdS/r+. While the leading
order term in this expansion matches the results of fluid dynamics, we find deviations from
the predictions of Navier-Stokes equations at subleading orders.

While in this chapter we have used fluid dynamics to make predictions for black
hole physics, the reverse view point may also prove useful. Existing black hole solutions
in AdS spaces provide exact equilibrium solutions to the equations of fluid dynamics to
all orders in lmfp. A study of the higher order corrections of these solutions (away from
the lmfp → 0 limit) might yield useful information about the nature of the fluid dynamical
approximation of quantum field theories.

The plan of this chapter is as follows - In §3.1, we describe the general features of

2See, however, §3.5.8 for a puzzle regarding the first subleading corrections for a class of black holes in
AdS5.
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fluid mechanics in conformal theories that are necessary for our work. It is followed by §3.2
in which we consider in detail a specific example of rigidly rotating fluid - a conformal fluid
in S3 × R. A straightforward generalisation gives us a succinct way of formulating fluid
mechanics in spheres of arbitrary dimensions in §3.3.

We proceed then to compare the fluid mechanical predictions with various types
of black holes in arbitrary dimensions. First, we consider uncharged rotating black holes in
arbitrary dimensions in §3.4. Their thermodynamics, stress tensors and charge distributions
are computed and are shown to exactly match the fluid mechanical predictions. In §3.5, we
turn to the large class of rotating black hole solutions in AdS5 × S5. Many different black
holes with different sets of charges and angular momenta are considered in the large horizon
radius limit and all of them are shown to fit exactly into our proposal in the strict fluid
dynamical limit. However we also find deviations from the predictions of the Navier-Stokes
equations at first subleading order in lmfp for black holes with all SO(6) Cartan charges
nonzero (these deviations vanish when the angular velocities, or one of the SO(6) charges
is set to zero). This finding is at odds with naive expectations from fluid dynamics, which
predict the first deviations from the Navier-Stokes equations to occur at O(l2mfp) and is an
as yet unresolved puzzle (a resolution was proposed in [74, 75], we will discuss this crtically
in §3.7).

This is followed by §3.6, dealing with large rotating black holes in AdS4 × S7 and
AdS7×S4 backgrounds which are dual to field theories on M2 and M5 branes respectively.
The thermodynamics of the rotating black hole solutions in these spaces are derived from
their static counterparts using the duality to fluid mechanics and it is shown how the known
rotating black hole solutions agree with the fluid mechanical predictions in the large horizon
radius limit. In each of these cases, the formulae of black hole thermodynamics deviate
from the predictions of the Navier-Stokes equations only at O(l2mfp) in accord with general
expectations. In the final section, we conclude our work and discuss further directions.

In Appendix 3.A, we discuss the constraints imposed by conformal invariance on
the equations of fluid mechanics. In Appendix 3.B, we discuss the thermodynamics of free
theories on spheres.

3.1 Fluid mechanics of conformal theories

In this section, we will discuss how our general treatment of fluid mechanics in
§2.2 applies to a conformal fluid – the fluid of the ‘stuff’ of a conformal field theory in d
dimensions. Conformal invariance imposes restrictions on both the thermodynamics of the
fluid and the derivative expansion of the stress tensor.

3.1.1 Conformal thermodynamics

In this subsection, we review the thermodynamics of the conformal fluids we discuss
in this chapter. The notation set up in this subsection will be used through the rest of this
chapter.

Recall from §2.1 that the thermodynamics of a fluid is completely specified once
we express the pressure, P, in terms of the temperature T and chemical potentials mi. Let
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us define the dimensionless quantity νi = mi/T . As a conformal theory has no dimensionful
parameters, it follows from dimensional analysis that the most general equation of state we
can have is

P = T dh(ν) , (3.3)

where h(ν) is an arbitrary function, defined by this expression. All remaining thermody-
namic expressions are easily determined in terms of the function h(ν) using (2.2):

ρ = (d− 1)P = (d− 1)T dh(ν) ,

ri = T d−1hi(ν) ,

s = T d−1(dh(ν)− νihi(ν)) ,

(3.4)

where hi(ν) = ∂h(ν)
∂νi

denotes the derivative of h(ν) with respect to its ith argument.

3.1.2 Conformal fluids

We will now discuss the restrictions imposed on the derivative expansion of the
stress tensor by conformal invariance.

To start with, conformal invariance requires that the stress tensor be traceless.3

This requirement relates the pressure of a conformal fluid to its density as P = ρ
d−1 (this

requirement may also be deduced from conformal thermodynamics, as seen in the previous
subsection) where d is the dimension of the spacetime in which the fluid lives. Further, the
tracelessness of the stress tensor also forces the bulk viscosity, ζ, to be zero.

It is easy to verify that these constraints are sufficient to guarantee the conformal
invariance of the fluid dynamical equations listed above. Consider a conformal transforma-
tion gµν = e2φg̃µν under which fluid velocity, temperature, rest energy density, pressure,
entropy density and the charge densities transform as

uµ = e−φũµ,

T = e−φT̃ ,

ρ = e−dφρ̃ , P = e−dφP̃ ,
s = e−(d−1)φs̃ ,

ri = e−(d−1)φr̃i .

It is easy to verify that these transformations induce the following transforma-
tions on the stress tensors and currents listed §2.2.2 (noting that under such a scaling,
the viscosity, conductivity etc. scale as κ = e−(d−2)φκ̃ , η = e−(d−1)φη̃, µi = e−φµ̃i and

3More accurately, conformal invariance relates the nonzero trace of the stress tensor to certain curvature
forms; for example, in two dimensions Tµµ = c

12
R where R is the scalar curvature. However, as we have

described above, curvatures are effectively zero in the one derivative expansion studied in this chapter. All
formulae through the rest of this chapter and in the appendices apply only upon neglecting curvatures. We
thank R. Gopakumar for a discussion of this point.
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Dij = e−(d−2)φD̃ij),

Tµν = e−(d+2)φT̃µν ,

Jµi = e−dφJ̃µi ,

JµS = e−dφJ̃µS .

(3.5)

These are precisely the transformation properties that ensure the conformal invariance of
the conservation equations (2.3). See Appendix 3.A for more details.

3.2 Equilibrium configurations of rotating conformal fluids
on S3

In this section and in the next, we will determine the equilibrium solutions of fluid
dynamics equations for conformal fluids on spheres of arbitrary dimension. In this section,
we work out the fluid dynamics on S3 plus a time dimension in detail.4 In the next section,
we generalise the results of this section to spheres of arbitrary dimension.

3.2.1 Coordinates and isometries

Consider a unit S3 embedded in R4 as

x1 = sin θ cosφ1

x2 = sin θ sinφ1

x3 = cos θ cosφ2

x4 = cos θ sinφ2

(3.6)

with θ ∈ [0, π2 ], φa ∈ [0, 2π). The metric of the spacetime S3 × R is

ds2 = −dt2 + dθ2 + sin2 θ dφ2
1 + cos2 θ dφ2

2 . (3.7)

The Killing vectors of interest are ∂t (Energy) and ∂φa (SO(4) Cartan angular
momenta).

3.2.2 Equilibrium solutions

In this subsection, we will discuss the construction of an equilibrium configurations
of a conformal fluid on S3 along the lines of §2.4. In this case, we are considering fluids
without surfaces, so we can ignore the considerations of §2.4.2 and surface terms in §2.4.3.

As we have explained in the §2.4.1, an equilibrium configuration can be specified
by a time-like Killing vector that describes the fluid flow. This has a unique solution – the
fluid motion should be just a rigid rotation. By an SO(4) rotation we can choose the two

4In this case, the dimensions of the spacetime in which the fluid lives is d = 3 + 1 = 4. The number
of mutually commuting angular momenta is n = 2. The black hole dual lives in AdS space of dimensions
D = d+ 1 = 5.
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orthogonal two planes of this rotation as the (1-2) and (3-4) planes (see (3.6)). This implies
that

u = γ(∂1 + Ω1∂φ1 + Ω2∂φ2), where γ =
(
1− v2

)−1/2

and v2 = Ω2
1 sin2 θ + Ω2

2 cos2 θ .
(3.8)

for some constants Ω1 and Ω2.
As discussed in §2.4.1, we are also forced to set

T = Tγ , mi = γµi = T νi , (3.9)

for constant T , µi and νi. These conditions completely determine all the thermodynamic
quantities as a function of the coordinates on the sphere.

In summary the 3 + c parameter set of stationary solutions to fluid mechanics
listed in this subsection (the parameters are T,Ωa and νi where i = 1 . . . c) constitute the
most general stationary solutions of fluid mechanics on S3.

3.2.3 Stress tensor and currents

Using the equations of state (3.4), we find that

ρ = 3P = 3T 4γ4h(ν),

s = T 3γ3[4h(ν)− νihi(ν)],

ri = T 3γ3hi(ν).

(3.10)

The stress tensor is

Tµν = Tc
4Aγ6×

3 + v2 0 4Ω1 4Ω2

0 1− v2 0 0
4Ω1 0 3Ω2

1 + csc2 θ − Ω2
2 cot2 θ 4Ω1Ω2

4Ω2 0 4Ω1Ω2 3Ω2
2 + sec2 θ − Ω2

1 tan2 θ

 . (3.11)

Charge and entropy currents are given by

Jµi = Tc
3γ4Ci(1, 0,Ω1,Ω2) ,

JµS = Tc
3γ4B(1, 0,Ω1,Ω2) ,

(3.12)

where we have defined

A = h(ν) ,
B = 4h(ν)− νihi(ν) ,

Ci = hi(ν) =
∂h

∂νi
.

(3.13)
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3.2.4 Overall thermodynamics

As discussed in §2.4.3, the quantities T , Ωa and µi can be interpreted as the
overall temperature, angular velocities and chemical potentials of the configuration. Note
that these are distinct from the local rest frame temperature and chemical potentials of the
fluid, T and mi. The latter are related to the thermal internal energy of the fluid in its rest
frame, the former are related to the total energy of the whole configuration, which includes
contributions from the kinetic energy.

One can compute the all the other thermodynamic properties using (2.40), which
in this case gives

T lnZgc =
∫

dV P = T 4h(ν)
∫

dV γ4 =
V4T

4h(ν)
(1− Ω2

1)(1− Ω2
2)
. (3.14)

where V4 = Vol(S3) = 2π2 is the volume of S3. In other words

lnZgc(T, µi,Ωa) =
lnZgc(T, µi, 0)

(1− Ω2
1)(1− Ω2

2)
.

The energy, angular momentum, entropy and R-charges may now easily be evalu-
ated by differentiation: we find

E =
V4T

4A

(1− Ω2
1)(1− Ω2

2)

[
2Ω2

1

1− Ω2
1

+
2Ω2

2

1− Ω2
2

+ 3
]
,

L1 =
V4T

4A

(1− Ω2
1)(1− Ω2

2)

[
2Ω1

1− Ω2
1

]
,

L2 =
V4T

4A

(1− Ω2
1)(1− Ω2

2)

[
2Ω2

1− Ω2
2

]
,

S =
V4T

3B

(1− Ω2
1)(1− Ω2

2)
,

Ri =
V4T

3Ci
(1− Ω2

1)(1− Ω2
2)
,

(3.15)

These formulae constitute a complete specification of the thermodynamics of stationary
rotating conformal fluids on S3.

3.2.5 Validity of fluid mechanics

A systematic way to estimate the domain of validity of the Navier-Stokes equations
would be to list all possible higher order corrections to these equations, and to check under
what circumstances the contributions of these correction terms to the stress tensor and
currents are small compared to the terms we have retained. Rather than carrying out such
a detailed (and worthwhile) exercise, we present in this section a heuristic physical estimate
of the domain of validity of fluid dynamics.

Consider a fluid composed of a collection of interacting ‘quasiparticles’, that move
at an average speed vp and whose collisions are separated (on the average) by the distance
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lmfp in the fluid rest frame. Consider a particular quasiparticle that undergoes two successive
collisions: the first at the coordinate location x1 and subsequently at x2. In order for the
fluid approximation to hold, it must be that

1. The fractional changes in thermodynamic quantities between the two collision points
(e.g. [T (x1)− T (x2)]/T (x1)) are small. This condition is necessary in order for us to
assume local thermal equilibrium.

2. The distance between the two successive collisions is small compared to the curva-
ture/compactification scales of the manifold on which the fluid propagates. This
approximation is necessary, for example, in order to justify the neglect of curvature
corrections to the Navier-Stokes equations.

Let us now see when these two conditions are obeyed on our solutions. Recall
that the local temperatures in our solutions take the form T = Tγ where T is the overall
temperature of the solution. If we treat the free path lmfp as a function of temperature and
chemical potentials, conformal invariance implies that

lmfp(T , νi) =
1
γ
lmfp(T, νi) .

Hence, the first condition listed above is satisfied when the fractional variation in
(say) the temperature is small over the rest frame mean free path lmfp(T , νi), i.e. provided

lmfp(T, νi)
γ

� γ

(
∂γ

∂θ

)−1

, (3.16)

which must hold for all points of the sphere.5 The strictest condition one obtains from this
is

lmfp(T, νi)�
1∣∣∣√1− Ω2

1 −
√

1− Ω2
2

∣∣∣ . (3.17)

It turns out that the second condition listed above is always more stringent, es-
pecially when applied to fluid quasiparticles whose rest frame motion between two col-
lisions is in the same direction as the local fluid velocity. It follows from the formulae
of Lorentz transformations that the distance on the sphere between two such collisions is
lmfp(T , νi)γ(1 + v/vp) = lmfp(T, νi)(1 + v/vp), where vp is the quasiparticle’s velocity in the
rest frame of the fluid and v the fluid velocity. As the factor (1 + v/vp) is bounded between
1 and 2, we conclude that the successive collisions happen at distances small compared to
the radius of the sphere provided

lmfp(T, νi)� 1 . (3.18)

Hence, we conclude that the condition (3.18) (which is always more stringent than
(3.17)) is the condition for the applicability of the equations of fluid mechanics.

5Recall that all variations in the temperature are perpendicular to fluid velocities, so that the typical
scale of variation in both the rest frame and the lab frame coincide.
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Of course the model (of interacting quasiparticles) that we have used to obtain
(3.18) need not apply to the situations of our interest. However the arguments that led
to (3.18) were essentially kinematical which leads us to believe that the result will be
universal. Nonetheless, it would be useful to verify this result by performing the detailed
analysis alluded to at the beginning of this subsection.

3.3 Rotating fluids on spheres of arbitrary dimension

We now generalise the discussion of the previous section to the study of conformal
fluids on spheres of arbitrary dimension.

Let us embed S2n in R2n+1 as

x2a−1 =

(
a−1∏
b=1

cos θb

)
sin θa cosφa ,

x2a =

(
a−1∏
b=1

cos θb

)
sin θa sinφa ,

x2n+1 =

(
n∏
b=1

cos θb

)
,

(3.19)

Where θn ∈ [0, π], all other θa ∈ [0, π2 ] and φa ∈ [0, 2π). Any products with the upper limit
smaller than the lower limit should be set to one. Although we appear to have specialised
to even dimensional spheres above, we can obtain all odd dimensional sphere, S2n−1, simply
by setting θn = π/2 in all the formulae of this section.

The metric on S2n× time is given by

ds2 = −dt2 +
n∑
a=1

(
a−1∏
b=1

cos2 θb

)
dθ2

a +
n∑
a=1

(
a−1∏
b=1

cos2 θb

)
sin2 θadφ2

a . (3.20)

We choose a rigidly rotating velocity

ut = γ uθa = 0 uφa = γΩa

γ = (1− v2)−1/2 v2 =
n∑
a=1

(
a−1∏
b=1

cos2 θb

)
sin2 θaΩ2

a

(3.21)

As in §3.2.2, the equations of motion are solved, without dissipation, by setting

T
γ

= T = constant,
µi
T

= νi = constant, (3.22)
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This gives a stress tensor

T tt = T dA(dγd+2 − γd) T tφa = T φat = T dAdγd+2Ωa

T θaθa = T dAγd

(
a−1∏
b=1

sec2 θb

)

T φaφa = T dA

[
dγd+2Ω2

a + γd

(
a−1∏
b=1

sec2 θb

)
csc2 θa

]
T φaφb = T dAdγd+2ΩaΩb

(3.23)

and currents
J tS = T d−1Bγd JθaS = 0 JφaS = T d−1BγdΩa ,

J ti = T d−1Ciγ
d Jθai = 0 Jφai = T d−1Ciγ

dΩa ,
(3.24)

where

A = h(ν) ,
B = dh(ν)− νihi(ν) ,
Ci = hi(ν) .

(3.25)

The grand partition function is given by6

lnZgc =
Vd T

d−1 h(µ/T )∏
b(1− Ω2

b)
, (3.26)

where

Vd = Vol(Sd−1) =
2·πd/2

Γ(d/2)
.

Differentiating this gives

E =
Vd T

d h(ν)∏
b(1− Ω2

b)

[
2
∑
a

Ω2
a

1− Ω2
a

+ d− 1

]
,

S =
Vd T

d−1[dh(ν)− νihi(ν)]∏
b(1− Ω2

b)
,

La =
Vd T

d h(ν)∏
b(1− Ω2

b)

[
2Ωa

1− Ω2
a

]
,

Ri =
Vd T

d−1 hi(ν)∏
b(1− Ω2

b)
,

(3.27)

As in the previous subsection, the fluid dynamical approximation is expected to
be valid provided lmfp(T, νi)� 1.

In Appendix 3.B, we have computed the thermodynamics of a free charged scalar
field on a sphere, and compared with the general results of this section.

6In deriving this formula we have ‘conjectured’ that
∫
Sd−1 γ

d = Vd∏[d/2]
b=1 (1−Ω2

b
)
. It is easy to derive this

formula for odd spheres. We have also analytically checked this formula for S2 and S4. We are ashamed,
however, to admit that we have not yet found an analytic derivation of this integral for general even spheres.
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3.4 Comparison with uncharged black holes in arbitrary di-
mensions

In the rest of this chapter, we will compare the predictions from fluid dynamics
derived above with the thermodynamics, stress tensors and charge distributions of various
classes of large rotating black hole solutions in AdS spaces. We start with uncharged
rotating black holes on D dimensional AdS spaces (where D is arbitrary), which are dual
to rotating configurations of uncharged fluids on spheres of dimension (D − 2).

3.4.1 Thermodynamics and stress tensor from fluid mechanics

In case of uncharged fluids the function h(ν) in the above section is a constant
h(ν) = h and the hi(ν) = ∂h(ν)

∂νi
are all equal to zero. It follows from (3.26) that the partition

function is given by

lnZgc =
Vd T

d−1 h∏
b(1− Ω2

b)
, (3.28)

and the analogue of equations (3.27) are

E =
Vd T

d h∏
b(1− Ω2

b)

[∑
a

2Ω2
a

1− Ω2
a

+ d− 1

]
,

S =
Vd T

d−1hd∏
b(1− Ω2

b)
,

La =
Vd T

d h∏
b(1− Ω2

b)

[
2Ωa

1− Ω2
a

]
,

Ri = 0 .

(3.29)

The stress tensor becomes

T tt = hT d(dγd+2 − γd) T tφa = T φat = hT ddγd+2Ωa

T θaθa = hT dγd

(
a−1∏
b=1

sec2 θb

)

T φaφa = hT d

[
dγd+2Ω2

a + γd

(
a−1∏
b=1

sec2 θb

)
csc2 θa

]
T φaφb = hT ddγd+2ΩaΩb .

(3.30)

The mean free path in fluid dynamics can be estimated by taking the ratio of shear
viscosity to energy density. As mentioned in the introduction, for fluids with gravity duals
we can equivalently estimate lmfp by taking the ratio of entropy to 4π times the energy
(because of the universal relation s = 4πη).

lmfp(T, ν)|Ω=0 ∼
[
S

4πE

]
Ω=0

=
d

4πT (d− 1)
. (3.31)

Consequently the expansion in lmfp translates simply to an expansion in inverse powers of
the temperature of our solutions.
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3.4.2 Thermodynamics from black holes

The most general solution for uncharged rotating black holes in AdSD was obtained
in [65, 66]. These solutions are labelled by the n+1 parameters7 ai and r+ (these are related
to the n angular velocities and the horizon radius (or equivalently the mass parameter) of
the black holes). The surface gravity κ and the horizon area A of these black holes are given
by8

κ =


r+(1 + r2

+)
n∑
i=1

1
r2

+ + a2
i

− 1
r+

when D = 2n+ 1 ,

r+(1 + r2
+)

n∑
i=1

1
r2

+ + a2
i

−
1− r2

+

2r+
when D = 2n+ 2 ,

A =


Vd
r+

n∏
i=1

r2
+ + a2

i

1− a2
i

when D = 2n+ 1 ,

Vd

n∏
i=1

r2
+ + a2

i

1− a2
i

when D = 2n+ 2 .

(3.32)

We will be interested in these formulae in the limit of large r+. In this limit the parameter
m (which appears in the formulae of [65, 66]) and the temperature T = κ/2π are given as
functions of r+ by

T =
[

(D − 1)r+

4π

] (
1 +O(1/r2

+)
)
,

2m = rD−1
+

(
1 +O(1/r2

+)
)
.

(3.33)

From these equations, it follows that the parameter m is related to the temperature T as

2m = TD−1

[
4π

D − 1

]D−1 (
1 +O(1/T 2)

)
. (3.34)

To leading order in r+, the thermodynamic formulae take the form

Ωi = ai ,

E =
VD−1T

D−1

16πGD
∏n
j=1(1− a2

j )

[
4π

D − 1

]D−1
[

n∑
i=1

2a2
i

1− a2
i

+D − 2

]
,

Li =
VD−1T

D−1

16πGD
∏n
j=1(1− a2

j )

[
4π

D − 1

]D−1 [ 2ai
1− a2

i

]
,

S =
VD−1T

D−2(D − 1)
16πGD

∏n
j=1(1− a2

j )

[
4π

D − 1

]D−1

,

Ri = 0 ,

(3.35)

7Recall that n denotes the number of commuting angular momenta and is given by the expression n =
rank [SO(D − 1)] on AdSD.

8In the expression of κ for even dimension, the sign inside the second term in equation (4.7) of [66] is
different form the sign given in equation (4.18) of [65]; we believe the latter sign is the correct one.
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where VD−1 is the volume of SD−2 and GD is Newton’s constant in D dimensions. The
corrections to each of these expressions are suppressed by factors of O(1/r2

+) = O(1/T 2)
relative to the leading order results presented above (i.e. there are no next to leading order
corrections).

These thermodynamic formulae listed in (3.35) are in perfect agreement with the
fluid mechanics expressions in (3.29) upon making the following identifications: the space-
time dimensions of the boundary theory d = D− 1, the black hole angular velocities ai are
identified with Ωa and the constant h is identified as

h =
1

16πGD

[
4π

D − 1

]D−1

. (3.36)

In the next subsection, we will see that this agreement goes beyond the global thermody-
namic quantities. Local conserved currents are also in perfect agreement with the black
hole physics.

3.4.3 Stress tensor from rotating black holes in AdSD

The uncharged rotating black holes both in odd dimensions (D = 2n+1) and even
dimensions (D = 2n + 2) are presented in detail in [65], equation (E-3) and [66], equation
(4.2). After performing some coordinate transformations that take the metric of that paper
to the standard form of AdSD at the boundary, we have computed the stress tensor of this
solution.

Our calculation uses the standard AdS/CFT dictionary (the details are presented
in an appendix of [1] but we do not reproduce them here). In more detail, we foliate the
solution in boundary spheres, compute the extrinsic curvature Θµ

ν of these foliations near
the boundary, subtract off the appropriate counter terms contributions [56–63], and finally
multiply the answer by the rD−1 to obtain the stress tensor on a unit sphere.

We find that the stress tensor so calculated takes the form

Πtt =
2m

16πGD
[(D − 1)γD+1 − γD−1]

Πφaφa =
2m

16πGD
[(D − 1)γD+1Ω2

a + γD−1µ−2
a ]

Πtφa = Πφat =
2m

16πGD
(D − 1)γD+1Ωa

Πφaφb = Πφbφa =
2m

16πGD
γD+1ΩaΩb

Πθaθa =
2m

16πGD
γD−1

(
a−1∏
b=1

sec2 θb

)
.

(3.37)

Here γ−2 = 1−
∑n

a=1 Ω2
aµ

2
a where µa =

(∏a−1
b=1 cos θb

)
sin θa.

Note that the functional form of these expressions (i.e. dependence of various
components of the stress tensor on the coordinates of the sphere) agrees exactly with the
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predictions of fluid dynamics even at finite values of r+. In the large r+ limit (using (3.34)
and (3.36)), we further have

D − 1 = d ,

2m
16πGD

= T dh .

With these identifications, (3.37) coming from gravity agrees precisely with (3.30) from fluid
mechanics.

We proceed now to estimate the limits of validity of our analysis above. From the
black hole side, since we have expanded the formulae of black hole thermodynamics in 1/r+

to match them with fluid mechanics, this analysis is valid if r+ is large. From the fluid
mechanics side, we expect corrections of the order of lmfp. To estimate lmfp in this case, we
substitute (3.33) into (3.31) to get

lmfp ∼
1

r+(d− 1)
� 1 .

Hence, we see that the condition from fluid mechanics is exactly the same as taking large
horizon radius limit: the expansion of black hole thermodynamics in a power series in 1

r+
appears to be exactly dual to the fluid mechanical expansion as a power series in lmfp.

3.5 Comparison with black holes in AdS5 × S5

Large N , N = 4 Yang-Mills, at strong ’t Hooft coupling on S3 × R, is dual to
classical gravity on AdS5×S5. Hence, we can specialise the general fluid dynamical analysis
presented above to the study of equilibrium configurations of the rotating N = 4 plasma
on S3 and then compare the results with the physics of classical black holes in AdS5 × S5.

Large black holes in AdS5 × S5 are expected to appear in a six parameter family,
labelled by three SO(6) Cartan charges (c = 3), two SO(4) rotations (n = 2) and the
mass. While the most general black hole in AdS5×S5 has not yet been constructed, several
sub-families of these black holes have been determined.

In this section, we will compare the thermodynamic predictions of fluid mechanics
with all black hole solutions that we are aware of and demonstrate that the two descriptions
agree in the large horizon radius limit. For one class of black holes we will also compare
black hole stress tensor and charge distributions with that of the fluid mechanics and once
again find perfect agreement (in the appropriate limit).

We begin this section with a review of the predictions of fluid mechanics for
strongly coupled N = 4 Yang-Mills on S3. Note that this is a special case of the con-
formal fluid dynamics of previous sections with d = D − 1 = 4.

3.5.1 The strongly coupled N = 4 Yang-Mills Plasma

The gravity solution for SO(6) charged black branes (or, equivalently, large SO(6)
charged but non-rotating black holes in AdS5 × S5) has been used to extract the equation
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of state of N = 4 Yang-Mills (see [76, §2] for the thermodynamic expressions in the infinite
radius limit).

Rather than listing all the thermodynamic variables, we use the earlier parametri-
sation of (3.4) to state our results. The thermodynamics of the N = 4 Yang-Mills is
described by the following equations9

h(ν) =
P
T 4

= 2π2N2

∏
j(1 + κj)3

(2 +
∑

j κj −
∏
j κj)4

,

νi =
µi
T

=
2π
∏
j(1 + κj)(

2 +
∑

j κj −
∏
j κj

) √κi
1 + κi

,

hi(ν) =
ri
T 3

=
2πN2

∏
j(1 + κj)2(

2 +
∑

j κj −
∏
j κj

)3

√
κi .

(3.38)

where the κi are auxiliary parameters. They can be directly related to the entropy and
charge densities:

κi =
(

2πri

s

)2

, (3.39)

and they are constrained by the conditions

κi ≥ 0,

2 +
∑

j κj −
∏
j κj∏

j(1 + κj)
=

∑
j

1
1 + κj

− 1

 ≥ 0,

which are obtained by requiring that the temperature T ≥ 0. It follows from (3.39) that
κi is finite for configurations with finite charge and non-zero entropy. The configurations
with κi →∞ (for any i) are thermodynamically singular, since in this limit, the ith charge
density is much larger than the entropy density. Hence, in the following, we shall demand
that κi be finite.

The general analysis presented before now allows us to construct the most general
stationary solution of the N = 4 fluid rotating on a 3-sphere. The thermodynamic formulae
and currents of these solutions follow from (3.12), (3.11) and (3.15) upon setting

A = h(ν) = 2π2N2

∏
j(1 + κj)3

(2 +
∑

j κj −
∏
j κj)4

,

B = 4h(ν)− νihi(ν) = 4π2N2

∏
j(1 + κj)2

(2 +
∑

j κj −
∏
j κj)3

,

Ci = hi(ν) = 2πN2√κi

∏
j(1 + κj)2

(2 +
∑

j κj −
∏
j κj)3

,

(3.40)

9Note that our convention for the gauge field differs from [76, §2] by a factor of
√

2.
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which leads to

µi =
2πT

∏
j(1 + κj)(

2 +
∑

j κj −
∏
j κj

) √κi
1 + κi

, (3.41)

and

lnZgc =
2π2N2V4T

3
∏
j(1 + κj)3

(1− Ω2
1)(1− Ω2

2)
(

2 +
∑

j κj −
∏
j κj

)4 , (3.42)

where we have used the notation V4 = Vol(S3) = 2π2 as before.
As before, the mean free path in fluid mechanics can be estimated as

lmfp ∼
[
S

4πE

]
Ω=0

=
B

(d− 1)4πTA
=

(
2 +

∑
j κj −

∏
j κj

)
6πT

∏
j(1 + κj)

=
1

6πT

∑
j

1
1 + κj

− 1

 . (3.43)

3.5.2 The extremal limit

The strongly coupled N = 4 Yang-Mills plasma has an interesting feature: it has
interesting and nontrivial thermodynamics even at zero temperature. In this subsection,
we investigate this feature and point out that it implies the existence of interesting zero
temperature solutions of fluid dynamics which will turn out to be dual to large, extremal
black holes.

Thermodynamics

In the above section, we presented the thermodynamics of strongly coupled N = 4
Yang-Mills plasma in terms of the parameters κi. These parameters are constrained by the
conditions κi ≥ 0 and

∑
i

1
1+κi

≥ 1 with κi finite. In order to visualise the allowed range
over which the variables κi’s can vary, it is convenient to define a new set of variables

Xi =
1

1 + κi
,

χ =
T

X1 +X2 +X3 − 1
.

(3.44)

The constraints κi ≥ 0 and
∑

i
1

1+κi
≥ 1 with κi finite translate into the constraints

0 < Xi ≤ 1 and X1 +X2 +X3 ≥ 1 . Geometrically, this is just the statement that Xi’s can
lie anywhere inside the cube shown in fig.3.1, away from the planes Xi = 0 and on or above
the plane X1 +X2 +X3 = 1.

The energy density, the entropy density and the charge densities of the Yang-Mills
plasma may be rewritten as a function of X1, X2, X3 and χ as

ρ = 6π2N2X1X2X3χ
4, s = 4π2N2X1X2X3χ

3,

ri = 2πN2X1X2X3χ
3

√
1−Xi

Xi
.

(3.45)
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X3
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S

Figure 3.1: The space of allowed κi’s. The axes correspond to Xi = 1
1+κi

. The Xi’s can lie
anywhere in the cube outside the “extremal” plane X1 +X2 +X3 = 1.

The condition for the validity of fluid mechanics becomes

lmfp ∼
1

6πχ
� 1 or χ� 1 . (3.46)

Consider now the case in which χ is large, but finite and X1, X2, X3 take values
close to the interior of the triangle ABC in fig.3.1. From (3.44) and (3.45), it is evident that
this is equivalent to taking an extremal limit T → 0 with appropriate chemical potentials.
All thermodynamic quantities listed above are smooth in this limit and the fluid mechanics
continues to be valid.

The N = 4 Yang-Mills plasma with three nonzero R-charges always has a non-
singular extremal limit. In the case that one of the charges say r3 is zero, then we are
constrained to move on the X3 = 1 plane in the space of Xi’s. Hence, we can never ap-
proach the ‘extremal triangle’ X1 +X2 +X3 = 1.10 Thus, we have no nonsingular extremal
limit if any one of the three R-charges is zero. By a similar argument, no nonsingular
extremal limit exists if two of the R-charges were zero.

We note that Gubser and Mitra have previously observed that charged black branes
near extremality are sometimes thermodynamically unstable [77]. Although we have not
performed a careful analysis of the thermodynamic stability of the charged fluids we study
in this chapter (see however [76]), we suspect that these fluids all have Gubser-Mitra type
thermodynamic instabilities near extremality. If this is the case, the near extremal fluid
solutions we study in this section and the next – and the black holes that these are dual to –
are presumably unstable to small fluctuations. Whether stable or not, these configurations

10Remember that we have already excluded, on physical grounds, the point X1 = X2 = 0, X3 = 1 which
lies in the intersection of X3 = 1 plane and the extremal plane X1 +X2 +X3 = 1.
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are valid solutions of fluid dynamics. We postpone a serious discussion of stability to future
work.11

Fluid mechanics

The thermodynamic expressions for the charges of a rotating Yang-Mills plasma
take the form

E =
2π2N2X1X2X3V4

(1− Ω2
1)(1− Ω2

2)

[
2Ω2

1

1− Ω2
1

+
2Ω2

2

1− Ω2
2

+ 3
] [

T

X1 +X2 +X3 − 1

]4

,

L1 =
2π2N2X1X2X3V4

(1− Ω2
1)(1− Ω2

2)

[
2Ω1

1− Ω2
1

] [
T

X1 +X2 +X3 − 1

]4

,

L2 =
2π2N2X1X2X3V4

(1− Ω2
1)(1− Ω2

2)

[
2Ω2

1− Ω2
2

] [
T

X1 +X2 +X3 − 1

]4

,

S =
4π2N2X1X2X3V4

(1− Ω2
1)(1− Ω2

2)

[
T

X1 +X2 +X3 − 1

]3

,

Ri =
2πN2X1X2X3V4

(1− Ω2
1)(1− Ω2

2)

[
T

X1 +X2 +X3 − 1

]3√1−Xi

Xi
,

(3.47)

and the mean free path

lmfp ∼
X1 +X2 +X3 − 1

6πT
� 1 . (3.48)

We see that all thermodynamical charges of our rotating fluid configurations are nonsingular,
and that fluid mechanics is a valid approximation for these solutions, in the extremal limit
described in the previous subsection, provided only that χ� 1.12

The solution so obtained describes a rotating fluid whose local temperature van-
ishes everywhere, but whose rest frame charge density is a function of location on the S3

(it scales like γ3). As we will see below these extremal configurations of rotating fluid on
S3 are exactly dual to large, rotating, extremal black holes in AdS5.

3.5.3 Black holes with all R-charges equal

Having derived the fluid mechanics predictions for various different black holes,
we now proceed to examine the black hole solutions. First, we will focus on the case of
black holes with arbitrary angular momenta in AdS5 but equal SO(6) charges. The relevant
solution has been presented in [68].

11We thank Sangmin Lee for discussion of these issues.

12In greater generality, in order for fluid mechanics to be a valid approximation for our solutions it is
necessary that either T � 1 (which is by itself sufficient) or that X+Y +Z− 1→ 0 (under which condition
the ratio χ of the previous section must be large and (conservatively) none of X, Y or Z be very small).
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Thermodynamics

The black holes presented in [68] are labelled by two angular velocities a, b, and
three more parameters q,m and r+. These five parameters are not all independent; they
are constrained by one equation relating horizon radius to the parameter m (∆r = 0 in that
paper). We thus have a four parameter set of black holes.13

The relatively complicated black hole thermodynamic formulae of [68] simplify if
the parameter r+ (which may be interpreted as the horizon radius) is taken to be large. In
particular, consider the limit

r+ � 1 and k = q/r3
+ fixed. (3.49)

In this limit, to leading order,we have

T =
r+

2π
(2− k2) ,

2m = r4
+(1 + k2) .

(3.50)

From the positivity of T and r+ it follows immediately that 0 ≤ k2 ≤ 2.

Multiplying all thermodynamic integrals in [68] by R3
AdS
G5

= 2N2

π and noting that
our charge R is equal to their Q/

√
3, the black hole thermodynamic formulae reduce to (to

leading order in r+)

Ω1 = a ,

Ω2 = b ,

µi =
2πkT

(2− k2)
,

lnZgc =
2π2N2(1 + y2)

(2− y2)4

[
V4T

3

(1− Ω2
1)(1− Ω2

2)

]
.

(3.51)

Once we identify the black hole parameter k2 with the fluid parameter κ ≡ κ1 = κ2 = κ3,
these formula take precisely the form of fluid mechanics formulae (3.41) and (3.42).

We can now compute the fluid mechanical mean free path lmfp as a function of
bulk black hole parameters. From equations (3.50) and (3.43), we find (assuming that r+

is large)

lmfp ∼
1

3r+(1 + κ)
.

As 1 + κ = 1 + k2 is bounded between 1 and 2, it appears from this equation that the
expansion in powers of 1/r+ is simply identical to the fluid dynamical expansion in powers
of lmfp. This explains why black hole thermodynamics agrees with the predictions of the
Navier-Stokes equations when (and only when) r+ is large.

13We work in conventions in which the AdS radius and hence the parameter g of [68] is set to unity.
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Stress tensor and charge currents

Just as in §3.4.3, we have computed the boundary stress tensor corresponding to
this black hole solution (by foliating the space into S3 ’s at infinity, computing the extrinsic
curvature of these sections, and subtracting the appropriate counterterms). At leading order
in 1

r+

Πtt =
m

8πG5
γ4(4γ2 − 1), Πθθ =

m

8πG5
γ4,

Πφφ =
m

8πG5
γ4(4γ2a2 + csc2 θ), Πψψ =

m

8πG5
γ4(4γ2a2 + sec2 θ),

Πtφ = Πφt =
4m

8πG5
aγ6, Πtψ = Πψt =

4m
8πG5

bγ6,

Πφψ = Πψφ =
4m

8πG5
abγ6.

(3.52)

In a similar fashion, the charge currents on S3 may be computed from the AdS/CFT
dictionary entry Jµi = −r4gµνAν |r→∞ where the indices µ, ν are tangent to the S3× time
foliations and and the bulk gauge field Aν is given in the equation (2) of [68]. We find

J t1 = J t2 = J t3 =
q

8πG5
γ4 Jθ1 = Jθ2 = Jθ3 = 0

Jφ1 = Jφ2 = Jφ3 =
q

8πG5
γ4a Jψ1 = Jψ2 = Jψ3 =

q

8πG5
γ4b .

(3.53)

Noting that the bulk parameters are related to the function h(ν) and its derivatives by

h(ν) =
2N2

π

[
2m

16πT 4

]
=

m

8πG5T 4
, hi(ν) =

2N2

π

q

8πT 3
=

q

8πG5T 3
, (3.54)

it is evident that the expressions in (3.52) and (3.53) are in precise agreement with the
predictions (3.24) of fluid dynamics.

3.5.4 Black holes with independent SO(6) charges and two equal rota-
tions

The most general (five parameter) black hole solutions with the two angular veloc-
ities set equal can be found in [67]. The thermodynamics of these black holes was computed
in [73].

The black hole solutions depend on the parameters δ1, δ2, δ3, a,m, r+ that are re-
lated by the equation Y (r) = 0. The thermodynamics of these black holes simplify in the
limit

r+ � 1 ,
2ms2

i

r2
+

= Hi − 1 fixed.

Then solving the equation Y = 0 in this limit, one can express m as

2m =
(H1H2H3)r4

+

(1− a2)
.
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The various thermodynamic quantities in this limit14 (after multiplying integrals by R3
AdS
G5

=
2N2

π ) can be summarised by

Ω1 = Ω2 = a , T =
r+

√
1− a2

2π

∑
j

H−1
j − 1

∏
j

√
Hj ,

µi = r+

√
1− a2

(√
Hi − 1
Hi

)∏
j

√
Hj =

2πT∑
j H
−1
j − 1

(√
Hi − 1
Hi

)
,

lnZgc =
πN2r3

+

2
√

1− a2

( ∏
j

√
Hj∑

j H
−1
j − 1

)
=

4π4N2T 3

(1− Ω2)2
(∏

j Hj

)(∑
j H
−1
j − 1

)4

(3.55)

These expressions match with (3.41) and (3.42) if κi is identified with Hi − 1 and we set
Ω1 = Ω2 = a, demonstrating perfect agreement between black hole and fluid dynamical
thermodynamics.

Translating the estimate for the mean free path into the black hole variables, we
find

lmfp ∼
1

3r+
∏
j

√
Hj

� 1 ,

(an equation that is valid only in the large r+ limit). Notice that lmfp is automatically small
in the large r+ limit, explaining why black hole thermodynamics agrees with the predictions
of the Navier-Stokes equations in this limit.

Notice that the fluid mechanical expansion parameter lmfp appears to differ from
the expansion parameter of black hole thermodynamics used above, 1/r+, by a factor of
1/
√∏

iHi. When the three charges of the black hole are in any fixed ratio a : b : c, with
none of a, b or c either zero or infinity, it may easily be verified that this additional factor is
bounded between a nonzero number (which depends on a, b, c) and unity. In this case the
two expansion parameters - lmfp and 1/r+ - are essentially the same.

However when one of the black hole charges (say R1) vanishes H2 and/or H3 can
formally take arbitrarily large values. In this extreme limit lmfp appears to differ significantly
from the bulk expansion parameter 1/r+. However large Hi implies large κi, a limit that
we have argued above to be thermodynamically singular. Keeping away from the suspicious
large κi limit, it is always true that lmfp is essentially identical 1/r+, the parameter in which
we have expanded the formulas of black hole thermodynamics.

3.5.5 Black holes with two equal large R-charges and third R-charge small

Chong et al. [69] have determined a class of black hole solutions with two SO(6)
charges held equal, while the third charge is a function of these two equal charges. In the
large radius limit, it turns out that this third charge is negligible compared to the first two,
so for our purposes these solutions can be thought of as black holes with two equal SO(6)

14We believe that [73] has a typo: (3.10) should read Φi = 2m
r2Hi

(sici + 1
2
aΩ(cisjsk − sicjck)). Note that

they also use coordinates ψ = φ1 + φ2 and ϕ = φ1 − φ2 so that Ω∂ψ = Ω
2
∂φ1 + Ω

2
∂φ2 so that Ωa = Ω

2
.
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charges, with arbitrary rotations and the third SO(6) charge set to zero. The parameters
of this black hole solution are a, b,m, r+, s, which are related by the equation X(r+) = 0.

Black hole formulae simplify in the limit

r+ � 1 and k =
2ms2

r2
+

fixed,

in units where the inverse AdS radius g = 1, which leads to

2m = r4
+(1 + k)2 .

Multiplying all thermodynamic integrals in [69] by R3
AdS
G5

= 2N2

π , in this limit, the
thermodynamics can be summarised by

Ω1 = a , Ω2 = b , T =
r+

π
,

µ1 = µ2 = πT
√
k , µ3 ∼ O

(
1
r2

+

)
,

lnZgc =
π2N2V4T

3(1 + k)2

8(1− a2)(1− b2)
.

(3.56)

Note that µ3 and R3 are subleading in r+. These formulae are in perfect agreement with
(3.41) and (3.42) if we identify κ ≡ κ1 = κ2 = k, κ3 = 0.

Translating the estimate for the fluid dynamical mean free path into the black hole
variables we find (assuming r+ � 0)

lmfp ∼
1

3r+(1 + κ)
.

It follows that the fluid dynamical expansion parameter is essentially the same as 1/r+,
provided we stay away from the thermodynamically suspect parameter regime of large κ .

3.5.6 Black holes with two R-charges zero

The solution for the most general black hole with two R-charges set to zero relevant
solution has was presented in [70]. The parameters of this black hole are x0,m, δ, a, b related
by X(x0) = 0.

The thermodynamics of these black holes simplifies in the limit

x0 � 1 , k =
√
x0δ fixed,

in units where g = 1, which leads to

2m =
x2

0

(1− k2)
.

This gives an upper bound on k: k ≤ 1.
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Multiplying all thermodynamic integrals in [70] by R3
AdS
G5

= 2N2

π , in this limit, the
thermodynamic formulae can be summarised by

Ω1 = a , Ω2 = b ,

T =
√
x0(2− k2)

2π
√

1− k2
, µ =

√
x0k =

2πTk
√

1− k2

2− k2
,

lnZgc =
x

3/2
0 πN2

2
√

1− k2(2− k2)(1− a2)(1− b2)
=

4π4N2T 3(1− k2)
(1− Ω2

1)(1− Ω2
2)(2− k2)4

(3.57)

Upon identifying κ1 = k2

1−k2 , κ2 = κ3 = 0, we find perfect agreement with (3.41) and (3.42).
The fluid dynamical mean free path may be evaluated as a function of bulk pa-

rameters as
lmfp ∼

1
3
√
x0(1 + κ1)

.

Note that lmfp is small whenever
√
x0 = r+ is large, an observation that explains

the agreement of black hole thermodynamics in the large r+ limit with the Navier-Stokes
equations. In more generality we see that lmfp is essentially the same as 1/r+, provided we
keep away from the thermodynamically suspicious parameter regime of κ1 large.

3.5.7 BPS bound and supersymmetric black holes

All solutions of IIB supergravity on AdS5 × S5, and all configurations of N = 4
Yang-Mills on S3 obey the BPS bound

E ≥ L1 + L2 +
∑
i

Ri . (3.58)

Within the validity of the fluid dynamical approximation, described in this chapter,

E − L1 − L2 =
2π2T 4A

(1− Ω2
1)(1− Ω2

2)
3 + Ω1 + Ω2 − Ω1Ω2

(1 + Ω1)(1 + Ω2)
; (3.59)

notice that the RHS of this equation is positive definite. The BPS bound is obeyed provided

TA
3 + Ω1 + Ω2 − Ω1Ω2

(1 + Ω1)(1 + Ω2)
≥
∑
i

Ci . (3.60)

Plugging in the explicit expressions for A and Ci from (3.40) for the case with all charges
equal, we find this condition is satisfied provided

r+ =
2πT
2− κ

≥ 6
√
κ(1 + Ω1)(1 + Ω2)

(1 + κ)(3 + Ω1 + Ω2 − Ω1Ω2)
. (3.61)

The RHS of (3.61) is of order unity. It follows that (3.58) is saturated only when r+ is
of unit order. When r+ � 1 (so that fluid dynamics is a valid approximation) the BPS
bound is always obeyed as a strict inequality. Supersymmetric black holes are never reliably
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described within fluid mechanics.15 The extremal black holes with large horizon radius, that
are well described by fluid mechanics (see §3.5.2) are always far from supersymmetry.

We have noted above that a large class of extremal configurations in strongly
interacting Yang-Mills – all those that admit a fluid dynamic description – are not BPS.
This is in sharp contrast with the results of computations in free Yang-Mills theory, in which
all extremal configurations are supersymmetric [78]. This difference is related to the fact,
noted previously, the divergent mean free path prevents a fluid mechanical description from
applying to free theories. A practical manifestation of this fact is that the function h(ν),
which appears in the analysis of free Yang-Mills in equation (5.2) of [78], and plays the role
of r+ in our discussion here, is always of order unity for all allowed values of the chemical
potential, and so can never become large.

3.5.8 Fluid dynamics versus black hole physics at next to leading order

As we have explained above, the formulae for all thermodynamic charges and
potentials of black holes of temperature T and chemical potentials νi, in AdS5 × S5, may
be expanded as a Taylor series in 1/r+ ∼ lmfp(T, νi). As we have verified above, for every
known family of large AdS black holes, the leading order results in this expansion perfectly
match the predictions of the Navier-Stokes equations. Higher order terms in this expansion
represent corrections to Navier-Stokes equations. In this subsection we investigate the
structure of these corrections.

Let us first investigate the case of black holes with at least one SO(6) charge set
equal to zero (the black holes studied in §3.5.5 and §3.5.6). It is not difficult to verify
that the first deviations from the large radius thermodynamics of these black holes occur
at O(1/r2

+) ∼ l2mfp. This result is in perfect accord with naive expectations from fluid
mechanics. As we have explained above, the fluid dynamical configurations presented in
this chapter are exact solutions to the equations of fluid mechanics with all one derivative
terms, i.e. to the first order in lmfp. In general we would expect our solutions (and their
thermodynamics) to be modified at O(l2mfp), exactly as we find from the black hole formulae.

However when we turn our attention to black holes with all three SO(6) charges
nonzero we run into a bit of a surprise. It appears that the thermodynamics (and stress
tensor and charge currents) of these black holes receives corrections at order O(1/r+) ∼ lmfp.
This result is a surprise because, for the reason we have explained in the previous paragraph,
we would have expected the first corrections to our fluid mechanical configuration to occur
at O(l2mfp).

We do not have a satisfactory resolution to this puzzle. In this subsection we will
simply present the expressions for the first order corrections to black hole thermodynamics

15Although it is possible to make the energy of supersymmetric black holes parametrically larger than
their entropy, this is achieved by scaling either Ω1 or Ω2 to unity with r+ kept at unit order. It is easy
to verify that in this limit the local, rest frame mean free path of the fluid is of unit order in regions of
the S3 and so fluid mechanics may not be used to describe these configurations. Note that the ‘physical’
radius ∼ (Area)1/3 of the black hole is distinct from the parameter r+ which determines the validity of fluid
dynamics. The physical radius can be made arbitrarily large for supersymmetric black holes. Nevertheless
fluid mechanics is only valid if r+ is large, which never happens for supersymmetric black holes.
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in a particular case (the case of black holes with all SO(6) charges equal), and leave the
explanation of these formulae to future work.

As we have mentioned above, the thermodynamics of a charged rotating black hole
in AdS5 × S5 with three equal charges and two different angular momenta can be found in
[68]. To calculate next to leading order (NLO) corrections to the thermodynamics of large
black holes, we systematically expand the thermodynamic quantities.

We find it convenient to shift to a new parametrisation in which there are no NLO
corrections to the intensive quantities. This allows us to cast the NLO corrections entirely in
terms of the extensive quantities. The parameters we choose are related to the parameters
in [68] in the following way

a = ωa −
√
κ(1− ω2

a)ωb
`

,

b = ωb −
√
κ(1− ω2

b )ωa
`

,

r+ = ` +
√
κωaωb ,

q =
√
κ`3 + 3κ`2ωaωb .

(3.62)

In terms of these parameters, the intensive quantities can be written as

Ωa = ωa +O
[

1
`2

]
,

Ωb = ωb +O
[

1
`2

]
,

T =
[

2− κ
2π

]
`+O

[
1
`

]
,

ν =
2π
√
κ

2− κ
+O

[
1
`2

]
,

(3.63)

where we have calculated up to NLO and confirmed that the intensive quantities do not get
corrected in this order.

This in turn means that the new parameters can be directly interpreted in terms
of the intensive quantities.

ωa = Ωa +O
[
l2mfp

]
, ωb = Ωb +O

[
l2mfp

]
,

where lmfp ∼ 2−κ
T .

` = T

[√
π2 + 2ν2 + π

2

]
+O

[
1
T 2

]
,

√
κ =

√
π2 + 2ν2 − π

ν
+O

[
1
T 2

]
.

Now, we calculate NLO corrections to the extensive quantities in terms of the new
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parameters.

2m = (1 + κ)`4 + 4
√
κ(1 + κ)ΩaΩb`

3 +O[`2] ,

S =
T 3

G5(1− Ω2
a)(1− Ω2

b)

[
4π5

(2− κ)3
+O

[
1
T 2

]]
,

La =
T 4

G5(1− Ω2
a)(1− Ω2

b)

[
2Ωa

1− Ω2
a

[
2π5(1 + κ)
(2− κ)4

]
− πν3Ωb

4T

[
1 + Ω2

a

1− Ω2
a

]
+O

[
1
T 2

]]
,

Lb =
T 4

G5(1− Ω2
a)(1− Ω2

b)

[
2Ωb

1− Ω2
b

[
2π5(1 + κ)
(2− κ)4

]
− πν3Ωa

4T
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1 + Ω2

b
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1
T 2
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,

R =
T 3

G5(1− Ω2
a)(1− Ω2

b)

[
2π4√κ

(2− κ)3
− πν2

4T
ΩaΩb +O

[
1
T 2

]]
,

E =
T 4

G5(1− Ω2
a)(1− Ω2

b)

[
2π5(1 + κ)
(2− κ)4
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2

1− Ω2
a
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2

1− Ω2
b

− 1
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−πν
3ΩaΩb

4T
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1− Ω2
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2
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[
1
T 2
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,

(3.64)

where G5 = πR3
AdS/(2N

2) is the Newton’s constant in AdS5.
In particular, the subleading terms can be isolated and written as

∆S = 0 ,

∆E = − πµ3ΩaΩb

4G5(1− Ω2
a)(1− Ω2

b)

[
2

1− Ω2
a

+
2

1− Ω2
b

]
,

∆La = − πµ3Ωb(1 + Ω2
a)

4G5(1− Ω2
a)2(1− Ω2

b)
,

∆Lb = −
πµ3Ωa(1 + Ω2

b)
4G5(1− Ω2

a)(1− Ω2
b)

2
,

∆R = − πµ2ΩaΩb

4G5(1− Ω2
a)(1− Ω2

b)
,

∆ lnZgc =
πµ3ΩaΩb

4G5T (1− Ω2
a)(1− Ω2

b)
.

(3.65)

3.6 Comparison with black holes in AdS4 × S7 and AdS7 × S4

In this section we compare solutions of rotating fluids of the M5 or M2 brane
conformal field theory on S2 or S5 to the classical physics of black holes in M theory on
AdS4 × S7 and AdS7 × S5 respectively. Our results turn out to be qualitatively similar to
those of the previous section with one difference: the puzzle regarding the next to leading
order agreement between fluid dynamics and black hole physics seems to be absent in this
case.
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3.6.1 Predictions from fluid mechanics

The equations of state of the strongly coupled M2 and M5 brane fluids were
computed from spinning brane solutions in [79]. Our parameters are related to theirs by
κi = l2i /r

2
H .

M2 branes

We define our R-charges to be half of the angular momenta of [79] to agree with
gauged supergravity conventions. The equation of state is

h(ν) =
4π2(2N)3/2

∏
j(1 + κj)5/2

3(3 + 2
∑

j κj +
∑

j<k κjκk −
∏
j κj)3

,

νi =
4π
∏
j(1 + κj)

(3 + 2
∑

j κj +
∑

j<k κjκk −
∏
j κj)

( √
κi

1 + κi

)
,

hi(ν) =
π(2N)3/2

∏
j(1 + κj)3/2

3(3 + 2
∑

j κj +
∑

j<k κjκk −
∏
j κj)2

√
κi ,

(3.66)

where i, j, k = 1 . . . 4.
The stress tensor and currents are given by (3.23) and (3.24) with

A =
4π2(2N)3/2

∏
j(1 + κj)5/2

3(3 + 2
∑

j κj +
∑

j<k κjκk −
∏
j κj)3

,

B =
4π2(2N)3/2

∏
j(1 + κj)3/2

3(3 + 2
∑

j κj +
∑

j<k κjκk −
∏
j κj)2

,

Ci =
π(2N)3/2

∏
j(1 + κj)3/2

3(3 + 2
∑

j κj +
∑

j<k κjκk −
∏
j κj)2

√
κi .

(3.67)

The thermodynamics can be summarised by

µi =
4πT

∏
j(1 + κj)

(3 + 2
∑

j κj +
∑

j<k κjκk −
∏
j κj)

( √
κi

1 + κi

)
,

lnZgc =
16π3(2N)3/2T 2

∏
j(1 + κj)5/2

3(1− Ω2)(3 + 2
∑

j κj +
∑

j<k κjκk −
∏
j κj)3

.

(3.68)

The mean free path in fluid dynamics is given by

lmfp ∼
[
S

4πE

]
Ω=0

=
B

(d− 1)4πTA
=

(
3 + 2

∑
j κj +

∑
j<k κjκk −

∏
j κj

)
8πT

∏
j(1 + κj)

=
1

8πT

∑
j

1
1 + κj

− 1

 . (3.69)

It is evident that the thermodynamic equations of state listed above allow a set
of extremal fluid configurations very similar to those discussed in §3.5.2. The analysis of
§3.5.2 can be easily extended to fluids on S2.
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M5 branes

We define our R-charges to be twice the angular momenta of [79] to agree with
gauged supergravity conventions. The equation of state is

h(ν) =
64π3N3

∏
j(1 + κj)4

3(3 +
∑

j κj −
∏
j κj)6

,

νi =
2π
∏
j(1 + κj)

(3 +
∑

j κj −
∏
j κj)

( √
κi

1 + κi

)
,

hi(ν) =
128π2N3

∏
j(1 + κj)3

3(3 +
∑

j κj −
∏
j κj)5

√
κi ,

(3.70)

where i = 1, 2.
The stress tensor and currents are given by (3.23) and (3.24) with

A =
64π3N3

∏
j(1 + κj)4

3(3 +
∑

j κj −
∏
j κj)6

,

B =
128π3N3

∏
j(1 + κj)3

3(3 +
∑

j κj −
∏
j κj)5

Ci =
128π2N3

∏
j(1 + κj)3

3(3 +
∑

j κj −
∏
j κj)5

√
κi .

(3.71)

The thermodynamics can be summarised by

µi =
4πT

∏
j(1 + κj)

(3 + 2
∑

j κj +
∑

j<k κjκk −
∏
j κj)

( √
κi

1 + κi

)
,

lnZgc =
64π6N3T 5

∏
j(1 + κj)4

3
∏
a(1− Ω2

a)(3 +
∑

j κj −
∏
j κj)3

.

(3.72)

The mean free path in fluid dynamics is given by

lmfp ∼
[
S

4πE

]
Ω=0

=
B

(d− 1)4πTA
=

(
3 +

∑
j κj −

∏
j κj

)
10πT

∏
j(1 + κj)

=
1

10πT

∑
j

2
1 + κj

− 1

 . (3.73)

It is evident that the thermodynamic equations of state listed above allow a set
of extremal fluid configurations very similar to those discussed in §3.5.2. The analysis of
§3.5.2 can be easily extended to fluids on S5.
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3.6.2 Black holes in AdS4 with pairwise equal charges

The relevant solution was found in [72]. Its thermodynamics have been computed
in [73]. We consider the limit of large r+ with 2ms2i

r+
= ki fixed. In this limit m can be

written as

m =
r3

+

2
(1 + k1)2(1 + k2)2,

and therefore si ∼ 1
r+

.

After multiplying integrals by R2
AdS
G4

= (2N)3/2

3 , the thermodynamic quantities can
be expressed as

T =
r+(3 +

∑
j kj −

∏
j kj)

4π
, Ω = a ,

µ1 = µ3 = 4πT
(1 + k2)

√
k1

(3 +
∑

j kj −
∏
j kj)

, µ2 = µ4 = 4πT
(1 + k1)

√
k2

(3 +
∑

j kj −
∏
j kj)

,

lnZgc =
16π3(2N)3/2T 2

3

( ∏
j(1 + kj)2

(3 +
∑

j kj −
∏
j kj)3

)
1

1− a2
.

(3.74)

If one identifies k1 = κ1 = κ3 and k2 = κ2 = κ4, then these formulae match with (3.68).
It is not difficult to verify that the first corrections to the thermodynamic equations above
occur at O(1/r2

+).
It is clear from (3.74) that the black holes of this subsection admit a zero temper-

ature (extremal) limit with nonsingular thermodynamics at any every value of r+. These
extremal black holes are dual to extremal solutions of fluid dynamics analogous to those
described in the previous section in the context of N = 4 Yang-Mills.

The fluid dynamical mean free path may easily be computed as a function of black
hole parameters. From (3.69) we find

lmfp ∼
1

2r+
∏
j(1 + κj)

.

As in the previous section, the lmfp ∼ 1/r+ away from thermodynamically suspect limits of
parameters.

3.6.3 Black holes in AdS7 with equal rotation parameters

The relevant solution was found in [71]. Its thermodynamics have been computed
in [73].16

16We believe that [73] has the following typos: equation (4.7) should read

S =
π3(r2 + a2)

√
f1

4Ξ3
T =

Y ′

4πr(r2 + a2)
√
f1

Φi =
2msi
ρ4ΞHi

[Ξ−αi + βi(Ω− g)] .
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We set the parameter g in [73] to be unity and consider the limit

ρ+ � 1 , and Hi = 1 +
2ms2

i

ρ6
+

fixed,

where i=1,2. In this limit, the parameter m is given by

2m = ρ6
+H1H2 .

In this limit, after multiplying integrals by R5
AdS
G7

= 16N3

3π2 , the thermodynamics can
be summarised by

Ω = a , T =
ρ+

2π

(
2
∑

j Hj −
∏
j Hj∏

j

√
Hj

)
,

µ1 = 2πT
H2

√
H1 − 1

2
∑

j Hj −
∏
j Hj

, µ2 = 2πT
H1

√
H2 − 1

2
∑

j Hj −
∏
j Hj

,

lnZgc =
64π6N3T 5

3(1− Ω2)3

( ∏
j H

4
j

(2
∑

j Hj −
∏
j Hj)6

)
.

(3.75)

These formulae agree with (3.72) upon identifying κi = Hi−1 and setting Ω1 = Ω2 = Ω3 ≡
Ω = a. The first corrections to these thermodynamic formulae occur at O(1/r2

+).
Expressing the fluid mechanical mean free path (3.73) as a function of black hole

parameters we find

lmfp ∼
1

5ρ+
∏
j

√
1 + κj

.

Once again lmfp ∼ 1/r+, away from thermodynamically suspect limits.

3.7 Discussion

As we have explained in this chapter, the classical properties of large black holes in
AdS spaces enjoy a large degree of universality, summarised by (3.2). However the reasoning
that led to (3.2) applies equally to all classical theories of gravity, not just to those theories
that are governed by the two derivative effective action. For instance, N = 4 Yang-Mills
theory at finite λ is dual to IIB theory on AdS5 × S5 of finite radius in string units. Even
though thermodynamics of black holes in this background will receive contributions from
each of the infinite sequence of α′ corrections to the Einstein-Hilbert action, we expect (3.2)
to be exact in the large horizon radius limit.17

We find it particularly interesting that (at least in several particular contexts) our
fluid dynamical picture applies not just to non-extremal black holes but also to large radius

17Away from the supergravity limit, the mean free path lmfp = η/ρ is expected to be given by f(λ)s/4πρ
where f(λ) is a monotonically decreasing function that interpolates between infinity at λ = 0 to unity at
infinite λ. Thus the condition for the validity of fluid mechanics is modified at finite λ; in the uncharged
case, for instance, it is T � f(λ).
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extremal black holes. This fact might allow us to make connections between our approach
and the interesting recent investigations of the properties of extremal black holes. In par-
ticular, Astefanesei, Goldstein, Jena, Sen and Trivedi [80] have recently argued that the
attractor mechanism applies to rotating extremal black holes, and have derived a differen-
tial equation that determines the attractor geometry (and gauge field distribution, etc.) of
the near horizon region of such black holes. It would be very interesting to investigate the
connection, if any, between these rotating attractor equations and our equations of rotating
fluid dynamics.

It would be conceptually simple (though perhaps technically intricate) to compute
the spectrum of small fluctuations about the fluid dynamical solutions presented in this
chapter. This spectrum should match the spectrum of the (lowest) quasinormal modes
about the relevant black holes (the decay of fluid fluctuations due to viscosity maps to the
decay of quasi normal modes as they fall into the black hole horizon). It would be interesting
to check if this is indeed the case.

It would be interesting to better understand, purely in bulk terms, why our pro-
posal works. Roughly speaking, it should be possible to understand the metric of a black
hole in global AdS and in the large radius limit, as a superposition of patches of the metric
of black branes of various different temperatures and moving at various different velocities,
where the temperatures and velocities are given by the solutions to the fluid dynamical
equations presented in this chapter. It would be interesting and useful if these words could
be converted into the first term of a systematic approximation procedure to generate black
hole solutions in AdS spaces in a power series in 1/r+. Such a construction would constitute
a bulk derivation of the boundary Navier-Stokes equations (and corrections thereof).

Relatedly, it would be interesting to ask if there are any gravitational interpreta-
tions of the local properties of fluids in our solutions. For instance, fluid mechanics yields a
sharp prediction for the velocity and entropy density of the fluid as a function of position on
the sphere. We have not yet been able to verify these predictions, because we do not know
what gravitational construction we should compare them to. The entropy of the fluid is an
integral over the boundary. The entropy of the black hole is an integral over the horizon.
Perhaps there exists a natural map from the horizon to the boundary that allows one to
convert horizon densities to boundary densities and vice versa. Such a map (for which we
have no conjecture) would permit a gravitational interpretation for s, the local entropy
density of the fluid.

The fluid velocity is another quantity for which it would be useful to have a
gravitational definition. We do not really have a serious proposal for such a definition:
nonetheless, in the next few paragraphs we outline a caricature proposal, in order to give
the reader a sense of the types of relations that might exist (we emphasise that we do not
have any physical reason to believe that this caricature has any truth to it).

In the black hole solutions, there is one special Killing vector, K = ∂t + Ωa∂φa ,
that is also the null generator of the horizon. It has the norm

‖K‖2 ≡ −KµKµ =

{
r2γ−2 at the boundary,
0 at the horizon.

If we were to normalise it with respect to the metric of the conformal boundary, the result
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would be K̃ = γK. This could be identified with the fluid velocity uµ. However, as γ is
not constant, K̃ is not a Killing vector. It also seems unnatural to use a normalisation
factor that depends on θ but not r. Nonetheless, this much maligned vector field has an
interesting property.

Recall that black hole temperature and chemical potentials can be computed from
the formulae

T =
κ

2π
=

√
(∂µ ‖K‖)(∂µ ‖K‖)

2π

∣∣∣∣∣
horizon

, µi = AiµK
µ
∣∣
horizon

.

If one were to replace K with K̃ in the formulae above, one would obtain T and µi, the
local temperature and chemical potentials of the fluid.

We end this chapter by reminding the reader that, while our proposal has passed
many checks, our work has left one significant puzzle unresolved. While the thermodynamics
and stress tensors of uncharged rotating black holes in every dimension, plus all known
black holes in AdS7×S4 and AdS4×S7, deviate from the predictions of the Navier-Stokes
equations only at second order in lmfp, the situation is more complex for black holes in
AdS5×S5. In this case, black holes with at least one SO(6) charge equal to zero also agree
with the results of the Navier-Stokes equations up to O(l2mfp). However the thermodynamics
of rotating black holes with all SO(6) charges nonzero, appears to deviate from our fluid
mechanical predictions at O(lmfp) (see §3.5.8).

We consider this a significant puzzle as our fluid dynamical configurations solve the
Navier-Stokes equations including O(lmfp) dissipative contributions. Moreover, in appendix
3.A we have checked by direct enumeration that all possible parity invariant vectors and
traceless symmetric tensors that transform homogeneously under conformal transformation
and contain a single derivative simply vanish on our solution, so it is difficult to see how
any one derivative modification to the equations of fluid dynamics could help resolve this
puzzle.18 There is a proposed resolution to this puzzle in [74, 75]. They propose adding
a term proportional to ελµνσωµνuσ to the heat flux, qλ, and or the diffusion current jλi .
However, if we look at (2.11), we see that we would not be able to guarantee the increase
of entropy (not using the same qλ and jλi in the stress tensor and charge currents as in
the entropy current would violate the first law of thermodynamics). We emphasise that our
reason for excluding these terms was not parity invariance, but the laws of thermodynamics.

Once this puzzle is resolved it would be interesting to attempt to reproduce the
O(l2mfp) corrections to black hole thermodynamics from appropriate additions to the equa-
tions of fluid dynamics. It is perhaps worth emphasising that black holes in AdS represent
exact (to all orders in lmfp) solutions to a dynamical flow. A detailed study of these solu-
tions might lead to new insights into the nature of the fluid dynamical approximations of

18It has been suggested that certain pathologies in relativistic fluid dynamics lead to the breakdown of
the derivative expansion [81] (See also [52] and the references therein). As any such pathology should apply
equally to two charge and three charge black holes, we find it difficult to see how this issue could have
bearing on our puzzle. We thank S. Gupta and H. Liu for discussions on this issue. Another possibility is
that the formulae of black hole thermodynamics receive corrections – perhaps from Wess-Zumino type terms
– that are nonzero only in an even dimensional bulk (and so in ten but not in eleven dimensions) and only
when all charges are nonzero. We thank O. Aharony for suggesting this possibility.
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the high energy regime of quantum field theories.

Appendices

3.A Conformal fluid mechanics

Consider a conformal fluid in d dimensions. We seek the conformal transformations
of various observables of such a fluid. To this end, consider a conformal transformation which
replaces the old metric gµν with g̃µν given by

gµν = e2φg̃µν ; gµν = e−2φg̃µν .

The Christoffel symbols transform as

Γνλµ = Γ̃νλµ + δνλ∂µφ+ δνµ∂λφ− g̃λµg̃νσ∂σφ .

Let uµ be the four-velocity describing the fluid motion. Using the normalisation
condition gµνu

µuν = g̃µν ũ
µũν = −1, we get uµ = e−φũµ. It follows that the projection

tensor transforms as Pµν = gµν + uµuν = e−2φP̃µν . The transformation of the covariant
derivative of uµ is given by

∇µuν = ∂µu
ν + Γνµλu

λ = e−φ
[
∇̃µũν + δνµũ

σ∂σφ− g̃µλũλg̃νσ∂σφ
]
. (3.76)

The above equation can be used to derive the transformation of various related
quantities

ϑ = ∇µuµ = e−φ
[
ϑ̃+ (d− 1)ũσ∂σφ

]
,

aν = uµ∇µuν = e−2φ
[
ãν + P̃ νσ∂σφ

]
,

σµν =
1
2

(
Pµλ∇λuν + P νλ∇λuµ

)
− 1
d− 1

ϑPµν = e−3φσ̃µν ,

ωµν =
1
2

(
Pµλ∇λuν − P νλ∇λuµ

)
= e−3φω̃µν .

(3.77)

Further, the transformation of the temperature and the chemical potential can be written
as T = e−φT̃ and m = e−φm̃. The transformation of spatial gradient of temperature
(appearing in the Fourier law of heat conduction) is

Pµν(∂νT + aνT ) = e−3φP̃µν(∂ν T̃ + ãν T̃ ) .

The viscosity, conductivity etc. scale as κ = e−(d−2)φκ̃ , η = e−(d−1)φη̃, µi = e−φµ̃i and
Dij = e−(d−2)φD̃ij .

For a fluid with c charges, there are 2c + 2 vector quantities involving no more
than a single derivative which transform homogeneously19. They are

uµ, ∂µνi, ∂µT +
(
aµ −

ϑ

d− 1
uµ

)
T , uµuσ∂σνi and

(
uσ∂σT +

ϑ

d− 1
T
)
uµ.

19In the following analysis, we will neglect pseudo-tensors which can be formed out of εµνλ.... Additional
tensors appear if such pseudo-tensors are included in the analysis.
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In the kind of solutions we consider in this chapter, all of them vanish except uµ.
The transformation of the stress tensor is Tµν = e−(d+2)φT̃µν , from which it follows

that
∇µTµν = e−(d+2)φ(∇̃µT̃µν − g̃λσT̃ λσ g̃νσ∂σφ) .

So, for the stress tensor to be conserved in both the metrics, it is necessary that Tµν is
traceless.

To consider the possible terms that can appear in the stress tensor, we should look
at the traceless symmetric second rank tensors which transform homogeneously. The tensors
formed out of single derivatives which satisfy the above criterion are easily enumerated. For
a fluid with c charges, there are 2c+ 4 such tensors and they are

uµuν +
1
d
gµν , σµν , qµuν + qνuµ,

(
uσ∂σT +

ϑ

d− 1
T
)(

uµuν +
1
d
gµν
)
,

1
2

(
uµ∂λνi + uλ∂µνi

)
− gµν

d
uσ∂σνi and uσ∂σνi

(
uµuν +

1
d
gµν
)
.

(3.78)

Among these possibilities, the stress tensor we employ just contains the tensors in the first
line. It can be shown that the other tensors which appear in the above list can be removed
by a redefinition of the temperature etc. Even if they were to appear in the stress tensor,
for the purposes of this chapter, it suffices to notice that all such tensors except uµuν + 1

dg
µν

vanish on our solutions. Hence, they would not contribute to any of the thermodynamic
integrals evaluated on our solutions.

3.B Free thermodynamics on spheres

In (3.26) above, we have presented a general expression for the grand canonical
partition function for any conformal fluid on a sphere. In this appendix , we compare this
expression with the conformal thermodynamics of a free complex scalar field on a sphere.

Strictly speaking, the fluid dynamical description never applies to free theories on
a compact manifold, as the constituents of a free gas have a divergent mean free path (they
never collide). Nonetheless, as we demonstrate in this subsection, free thermodynamics
already displays some of the features of (3.26) - in its dependence on angular velocities, for
example - together with certain pathologies unique to free theories.

Consider a free complex scalar field on Sd−1× time. This system has a U(1)
symmetry, under which φ has unit charge and φ∗ has charge minus one. We define the ‘let-
ter partition function’ [82] Zlet as Tr exp [−βE + νR+ βΩaLa] evaluated over all spherical
harmonic modes of the scalar field

Zlet = (eν + e−ν)e−β
d−2

2

(
1− e−2β∏n

a=1(1− e−β−βΩa)(1− e−β+βΩa)

)
(3.79)

(this formula, and some of the others in this section, are valid only for even d; the gen-
eralisation to odd d is simple). We will now examine the high temperature limit of the
grand-canonical partition function separately for ν = 0 and ν 6= 0.
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3.B.1 Zero chemical potential: (ν = 0) case

The second quantised partition function, Zgc for the scalar field on the sphere is
given by

Zgc = exp

(∑
N

Zlet(Nβ,Nν,Ωa)
N

)
. (3.80)

For small β, we have

Zlet ≈
4

βd−1
∏
a(1− Ω2

a)
.

It follows that20

lnZgc =
4ζ(d)

βd−1
∏
a(1− Ω2

a)
. (3.81)

Upon identifying Vdh|ν=0 = 4ζ(d), we find that (3.80) is in perfect agreement with (3.26).

3.B.2 Nonzero chemical potential: (ν 6= 0) case

The high temperature limit of the thermodynamics of a free, charged, massless field
is complicated by the occurrence of Bose condensation. This phenomenon occurs already
when Ωa = 0; this is the case we first focus on.

It is useful to rewrite the letter partition function as

Zlet = (2 cosh ν) e−β
d−2

2

∑
N

m(N)e−βN , (3.82)

where m(N) ≈ 2Nd−2/(d− 2)! for N � 1. The logarithm of the grand canonical partition
function may then be written as a sum over Bose factors (one per ‘letter’)

lnZgc = −
∑
N

m(N)
[
ln(1− e−β(N+(d−2)/2)+ν) + ln(1− e−β(N+(d−2)/2)−ν)

]
. (3.83)

The total charge in this ensemble is given by

R =
∂

∂ν
lnZgc =

∑
N

m(N)
(

1
eβ(N+(d−2)/2)−ν − 1

− 1
eβ(N+(d−2)/2)+ν − 1

)
. (3.84)

In order to compare with fluid dynamics, we should take β to zero while simulta-
neously scaling to large R as R = q

βd−1 with q held fixed. As we will see below, in order to
make the total charge R large, we will have to choose the chemical potential to be large.
However it is clear from (3.83) that |ν| < β(d− 2)/2. Consequently, the best we can do is
to set ν = β((d− 2)/2)− ε where ε will be taken to be small. We are interested in the limit
when β is also small. We may approximate (3.84) by

q

βd−1
=

1
ε
− 1

eβ(d−2)−ε − 1
+
∞∑
N=1

(
1

eβN+ε − 1
− 1

eβ(N+(d−2))−ε − 1

)
. (3.85)

20This formula has been derived before in many contexts, for example [83] have derived this in d = 4 and
compared it with the thermodynamics of black holes in AdS5.
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The only solution to (3.85) is

ε =
βd−1

q
(1 +O(β)) .

Substituting this solution into the partition function, we find

lnZq =
4ζ(d)
βd−1

(1 +O(β)) . (3.86)

Consequently, to leading order the partition function is independent of the charge q ! What
is going on here is that almost all of the charge of the system resides in a Bose condensate
of the zero mode of the field φ. This zero mode contributes very little entropy or energy to
the system at leading order in β.21 At high temperatures, the zero mode is simply a sink
that absorbs the system charge, leaving the other thermodynamic parameters unaffected.

Upon generalising our analysis to include angular velocities, we once again find
that the leading order partition function (in the limit of high temperatures and a charge
R = q/βd−1) is independent of q and in fact is given by (3.81). Consequently, there is a
slightly trivial (or pathological) sense in which the thermodynamics of a free charged scalar
field agrees with the predictions of fluid mechanics - we find agreement upon setting h(ν)
to a constant.

21In particular, the contribution of the zero mode to the energy is proportional to the charge, which is
suppressed by a factor of β relative to the contribution to the energy from nonzero modes.
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Chapter 4

Plasmarings as dual black rings

In this chapter, we will study the plsamaball system, discussed in §1.3 in d = 2+1
in detail. In most of this chapter we will study d = 4, SU(N), N = 4 Yang-Mills at
’t Hooft coupling g2

YMN = λ, compactified on a Scherk-Schwarz S1 (the remaining 2 + 1
dimensions are non-compact). Our analysis will apply equally well to the Scherk-Scwarz
compactification of any strongly coupled, large N , conformal field theory. The low energy
dynamics of this theory is that of a 2 + 1 dimensional Yang-Mills system that undergoes
deconfining phase transition at a finite temperature [49]. At large N and strong ’t Hooft
coupling this system admits supergravity dual description; as discussed in §1.3, the low
temperature confining phase is dual to a gas of IIB supergravitons on the so called AdS
soliton background [49]

ds2 =
R2

AdS

z2

−dt2 +
[
1− (πTcz)

4
]

dθ2 + dx2
i +

dz2[
1− (πTcz)

4
]
 , (4.1)

where i = 1, 2, θ ∼ θ + Tc
−1, R2

AdS =
√
λα′.

The high temperature phase of the same system (at temperature T ) is dual to the
the black brane

ds2 =
R2

AdS

z2

− [1− (πT z)4
]

dt2 + dθ2 + dx2
i +

dz2[
1− (πT z)4

]
 . (4.2)

The thermodynamics of the high temperature phase can be computed using the usual
constitutive equations of black brane thermodynamics [50]

P =
π2N2

8Tc

(
T 4 − Tc

4
)
. (4.3)

This system undergoes a deconfinement phase transition at temperature T = Tc.
Just as the mean equilibrium properties of the deconfined phase are well described

by the equations of thermodynamics, the statistically averaged near-equilibrium dynamics
of this phase is governed by the equations of fluid dynamics – the relativistic generalisation

63
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of the Navier-Stokes equations. These equations accurately describe the time evolution of
fluid configurations whose space time derivatives are all small in units of the mean free path,
which is of the same order as the mass gap of the theory [25, 50]. The same equations,
augmented by appropriate surface terms, may also be used to study the dynamics of large
lumps of plasma localised in the gauge theory vacuum (see §2.3).

The properties of the surface that separates the plasma from the vacuum, may be
studied in the context of the simplest plasma profile with a surface; a configuration in which
half of space, x < 0, is filled with the plasma. The surface at x = 0 is a domain wall that
separates the plasma from the vacuum. The net force on this domain wall vanishes (and
so the system is in equilibrium) when the plasma that fills x < 0 has vanishing pressure,
i.e. at T = Tc in the large N limit. The bulk gravity dual of this solution was constructed
numerically in [50]; this configuration interpolates between the black brane at T = Tc for
x < 0 and the vacuum at x > 0, via a domain wall. The thickness and surface tension of
this domain wall may be read off from this gravitational solutions, and were estimated, in
[50] at approximately 6× 1

2πTc and σ = 2.0× π2N2Tc2

2 .
More generally, one would expect a finite lump of plasma that evolves according

to the relativistic Navier-Stokes equations map in the bulk to a ‘black hole’ that evolves
according to the Einstein equations. Provided all length scales in the plasma solution are
small compared to the gauge theory mass gap (which is of the same order as the domain
wall thickness), the dual bulk solution is well approximated by a superposition of patches
of the black brane solution (with temperature varying across the patches) in the bulk and
patches of the domain wall solution described in the previous paragraph. It follows (at least
for stationary solutions) that the 3 dimensional black hole horizon topology (at any given
time) is given by an S1 (physically this is the θ circle) fibred over the two dimensional fluid
configuration at the same time, subject to the condition that the S1 contracts at all fluid
surfaces (see fig.1.4). Consequently, fluid configurations with different topologies yield bulk
dual black hole configurations with distinct horizon topologies. We will return to this point
below.

This chapter is devoted to a detailed study of certain ‘stationary’ configurations
of the plasma fluid; i.e. time independent, steady state solutions to the relativistic Navier-
Stokes equations. The simplest configurations of this sort was studied already in [50]; the
plasmaball is a static, spherically symmetric lump of fluid at constant local pressure P with
P = σ/R where R is the radius of the lump and σ its surface tension. In this chapter we
study the more intricate spinning lumps of stationary fluid. These lumps carry angular
momentum in addition to their mass.

It turns out that the relativistic Navier-Stokes equations admit two distinct classes
of solutions of these sort. The first class of solution is a simple deformation of the static
plasmaball; it is given by plasmaballs that spin at a constant angular velocity. The cen-
tripetal force needed to keep the configuration rotating in this solution is provided by a
pressure gradient. The local plasma pressure (and hence local temperature and density)
decreases from the edge (where it is a positive number set by the radius, surface tension and
rotation speed) to the centre. As large enough angular velocity the pressure goes sufficiently
negative in the core of the solution to allow for a second kind of solution of these equations;
an annulus of plasma fluid rotating at constant angular velocity Ω. The local plasma pres-
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Ô - no solutions, Â - large ring, B̂ - large ring, small ring and ball, Ĉ - ball.

Â
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Ô
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Figure 4.1: (a) Regions where ball and ring solutions exist, (b) their entropy as a function
of angular momentum at fixed energy.

sure is positive on the outer surface and negative at the inner surface; the numerical value
of the pressure in each case precisely balances the surface tensions at these boundaries.

We now describe the moduli space of spinning plasmaball and plasma ring solutions
in a little more detail. In fig.4.1(a) we have plotted the energy-angular momentum plane,
which we have divided up into 4 regions. In region Ĉ (low angular momentum at fixed
energy) the only rigidly rotating solution to the equations of fluid dynamics is the rotating
plasmaball. At higher angular momentum (region B̂) in addition to the rotating plasmaball
there exist two new annulus type solutions which we call large and small ring solutions. As
their names makes clear, the solutions are distinguished by their size; the large ring has a
larger outer radius than the small one. On further raising angular momentum (region Â),
the small ring and the ball cease to exist; in this region the large ring is the only solution.
Finally, at still larger angular momentum (region Ô) there exist no solutions.

In fig.4.1(b) we have plotted the entropy of the three different kinds of solutions
as a function of their angular momentum at a particular fixed energy. At angular momenta
for which all three solutions coexist (region B̂) the entropy of the small ring is always
smaller than the entropy of either the large ring or the black hole. Upon raising the angular
momentum, the solution with dominant entropy switches from being the ball to the large
ring; the first order transition between these solutions occurs at an angular momentum that
lies on a ‘phase transition line’ in the bulk of region B̂. This picture suggests - and we
conjecture - that the ball and the large ring are locally stable with respect to axisymmetric
fluctuations, while the small ring is locally unstable to such fluctuations.1 In §4.3.5 we
perform a ‘turning point’ analysis of our solutions, to find some evidence for this guess. We
will analyse the stability of these solutions in more detain in Ch.5.

Let us now turn to the bulk dual interpretation of our solutions. The fluid for the
spinning plasmaball is topologically a disk; consequently the horizon topology for the dual
bulk solution - the S1 fibration over this disk - yields an S3. The bulk dual of the spinning

1It is possible that the large ring exhibits Plateau-Rayleigh type instabilities that break rotational in-
variance; such modes would map to Gregory-Laflamme type instabilities of the bulk solution (see also [29]).
We thank T. Wiseman for suggesting this possibility.
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plasmaball is simply a rotating five dimensional black hole. On the other hand the fluid
configuration of the plasmaring has the topology of S1× interval; the S1 fibration over this
configuration yields S1 × S2; i.e. a five dimensional black ring! Notice that in addition to
the isometry along the S1, these ring solutions all have a isometry on the S2 corresponding
to translations along the Scherk-Schwarz circle. This additional isometry, that does not
appear to be required by symmetry considerations, appears to be a feature of all known
black ring solutions in flat space as well.

Using the gauge theory / gravity duality, the quantitative versions of the fig.4.1 give
precise quantitative predictions for the existence, thermodynamic properties and stability
of sufficiently big black holes and black rings in Scherk-Schwarz compactified AdS5 spaces.
While these gravitational solutions have not yet been constructed, their analogues in flat 5
dimensional space are known, and have been well studied. The general qualitative features
(and some quantitative features) of fig.4.1 are in remarkably good agreement with the
analogous plots for black holes and black rings in flat five dimensional space (see §4.3.4 for
a detailed discussion).

The constructions we have described above admit simple generalisations to plasma
solutions dual to black holes and black rings in Scherk-Schwarz compactified AdS6 space.2

We postpone this analysis to Ch.6.
Finally, we should point out that there has been a long history within the General

Relativity literature of treating black hole horizons as surfaces associated with fluids. In
one of the most recent discussion within this framework, the authors of [31] have modelled
spinning black holes in d+ 1 dimensional (flat space) gravity by d+ 1 dimensional lumps of
incompressible fluid; here the fluid surface represents the black hole horizon. Within this
framework the 4+1 dimensional black ring, for instance, is modelled by a 4+1 dimensional
stationary fluid lump of topology B3 × S1 [30]. This description is rather different from
the AdS/CFT induced description of black rings in Scherk Schwarz compactified AdS5

as a 2+1 dimensional annulus of fluid. It would be interesting to better understand the
interconnections between these approaches.

4.1 Confining fluid

4.1.1 Equations of state

To solve the equations of fluid mechanics, one also needs expressions for the var-
ious coefficients that appear in the stress tensor above in terms of the density. For our
purposes, we only need to know the thermodynamic properties of the fluid, which could
be determined from the static black brane solution (4.2). In this subsection we discuss
thermodynamics of the plasma at rest. This is different from the overall thermodynamics
of the plasmaball/plasmaring that we will discuss in §4.2.4. We will be restricting attention
to plasmas with all chemical potentials and conserved charges set to zero.

2Note that the spinning plasmaring has no analogue in 1+1 dimensional fluid dynamics, for the excellent
reason that there is no spin. This tallies with the fact that there are no black rings in four dimensions (at
least in flat space).
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Recall from §2.1 that the thermodynamics of a fluid is completely specified once
we express the pressure, P, in terms of the temperature T . For a conformal theory in d
dimensions with no conserved charges, dimensional analysis determines

P = αT d, (4.4)

with α an arbitrary constant. In our situation, the plasma is dual to the same black brane,
so it doesn’t know about any capping off in the IR except that the energy is measured with
respect to a different zero. Before reducing on the Scherk-Schwarz circle, it behaves like
a conformal theory in d + 1 dimensions plus a vacuum energy density. After dimensional
reduction on the Scherc-Scwarz circle of radius 1/Tc,3 we have

P =
α

Tc
T d+1 − ρ0. (4.5)

The phase transition occurs when the confined and deconfined phase have the same free
energy density, and hence the same pressure. As the deconfined plasma has a pressure of
order N2 (if we are considering a gauge theory) and the confined phase has a pressure of
order N0, to leading order at large N this phase transition occurs when P = 0:

ρ0 = αTc
d. (4.6)

Using (2.2), this gives

P =
α

Tc

(
T d+1 − Tc

d+1
)
, ρ =

α

Tc

(
dT d+1 + Tc

d+1
)
, s =

(d+ 1)α
Tc

T d. (4.7)

or, in three dimensions

P =
α

Tc

(
T 4 − Tc

4
)
, ρ =

α

Tc

(
3T 4 + Tc

4
)
, s =

4α
Tc
T 3. (4.8)

Note that the critical density (the density at the phase transition) is not ρ0, but
is given by

ρc = (d+ 1)ρ0 = (d+ 1)αTc
d = scTc . (4.9)

The thermalisation length scale can be estimated from (2.16):

lmfp ∼
s

4πρ
=

(d+ 1)T d

4π(dT d+1 + Tc
d+1)

. (4.10)

For the black-brane equation of state (4.3)

α =
π2N2

8
. (4.11)

However, the values of this constant will not be important below.

3Strictly speaking, it is not a dimensional reduction as we will have plasma temperature of the same
order as the Kaluza-Klein scale. Rather, we are restricting attention to classical solutions that do not vary
in this compact dimension.
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4.1.2 Surface tension

The surface tension at T = Tc can be computed from the domain wall solutions
constructed in [50].

σ =


2.0× ρc

Tc
for d = 3,

1.7× ρc

Tc
for d = 4.

(4.12)

Unfortunately, we do not know the surface tension at any other temperature, so we will
assume that it is constant. This will hopefully be a reasonable approximation, provided
that T − Tc is small.

We can estimate the thickness of the surface using (2.27)

ξ =
σ

ρc
=

σ

(d+ 1)αTc
d

=


2.0
Tc

for d = 3,

1.7
Tc

for d = 4.
(4.13)

This compares well with the thickness of the domain wall taken from the gravity solution:
6× 1

2πTc in d = 3 and 5× 1
2πTc in d = 4.

For the purposes of this and subsequent chapters, it is useful to define the related
length scale

ξ′ = (d+ 1)ξ =
σ

ρ0
=

σ

αTc
d
. (4.14)

This length scale is of order N0, and is similar to lmfp and the surface thickness (provided
that T is close to Tc), all of which are ∼ 1/Tc.

4.2 Rigidly rotating configurations

In this section, we study stationary, axially symmetric rotating fluid configurations
in 2+1 dimensions, whose equation of state is presented in §4.1.1. As discussed in §2.4, the
velocity should be proportional to a time-like Killing vector, and we can always boost to a
frame where this Killing vector describes rigid rotation. In order to be stationary, the fluid
configuration must ne axially symmetric.

We choose the axis of rotation as our origin in polar coordinates; in these coor-
dinates the fluid temperature is a function only of the radial coordinate r, and the (t, r, φ)
components of the velocity are given by uµ = γ(1, 0,Ω) with the normalisation factor
γ =

(
1− Ω2r2

)−1/2. We will find two distinct kinds of solutions; rotating plasmaballs
with the topology of a two dimensional disk, and plasmarings with the topology of a two
dimensional annulus. The configurations we find are exact solutions to the equations of
relativistic fluid dynamics; in §4.3.2 we will demonstrate that these equations accurately
represent plasma dynamics for large enough plasmaballs and plasmarings.
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4.2.1 Solving the equations of motion

Our fluid propagates in flat 2+1 dimensional space. In polar coordinates

ds2 = −dt2 + dr2 + r2dφ2 . (4.15)

As discussed above, we choose a velocity profile

u = γ(∂t + Ω∂φ), γ =
(
1− Ω2r2

)−1/2
. (4.16)

Following (2.30), we must choose the temperature profile

T = γT. (4.17)

which, using (4.7), leads to the pressure profile

P =
α

Tc

(
γ4T 4 − Tc

4
)
. (4.18)

Outer and inner surfaces can be described, as in §2.3, by the functions

fo = ro − r, Θ =
1
ro
,

fi = r − ri, Θ = − 1
ri
.

(4.19)

4.2.2 Spinning ball

Let us first study a fluid configuration with a single outer surface at r = ro. Using
the (4.18) and (4.19), the boundary condition (2.31) can be written as

α

Tc

(
T 4

(1− Ω2r2
o)2
− Tc

4

)
=

σ

ro
. (4.20)

If we define dimensionless variables

Ω̃ = ξ′Ω , r̃ =
r

ξ′
, v = Ωr = Ω̃r̃ , T̃ =

T

Tc
, (4.21)

where ξ′ is defined in (4.14), then (4.20) can be written as

T̃ 4 =

(
1 +

Ω̃
vo

)(
1− v2

o

)2 ≡ g+(vo). (4.22)

Note that the range of v is [0, 1] and T̃ 4 is always positive for this solution, as is
required for this to make sense.

It is convenient to take the two independent parameters of the ball solution to be
vo and Ω̃, with (4.22) determining T̃ .
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v∗ov∗iΩ̃ 1

g∗

g+(v)

g−(v)

v

Figure 4.2: Graph of g±(v) showing possible values of vo,i

4.2.3 Spinning ring

We now turn to solutions that have an inner surface well an outer surface. In
addition to the boundary condition at the outer radius (4.20) we now have

α

Tc

(
T 4

(1− Ω2r2
i )2
− Tc

4

)
= −σ

ri
. (4.23)

So the positions of the boundaries are related to the temperature and angular
velocity by

T̃ 4 =

(
1 +

Ω̃
vo

)(
1− v2

o

)2 ≡ g+(vo)

=

(
1− Ω̃

vi

)(
1− v2

i

)2 ≡ g−(vi).

(4.24)

Note that T̃ 4 ≥ 0 provided that vi ≥ Ω̃.
It is convenient to take the two independent parameters of the ring solution to be

vo and vi, using (4.22) to eliminate T̃ and Ω̃:

Ω̃ =
vovi(vo − vi)(2− v2

o − v2
i )

1− vovi(2− v2
o + vovi − v2

i )
,

T̃ 4 =
(1− v2

o)2(1− v2
i )2

1− vovi(2− v2
o + vovi − v2

i )
.

(4.25)

The two functions, g±(v) are schematically plotted in fig.4.2 for some value of Ω̃,
where we have labelled special velocities v∗i and v∗o. As vi < 1, it is necessary that Ω̃ < 1.

We can see that there are no solutions to g+(vo) = g−(vi) for vo < v∗o and two
solutions for vo > v∗o. One of these has vi < v∗i (the thick ring) and one has vi > v∗i (the thin
ring). The distinction between ‘thin’ and ‘thick’ rings will not prove physically important.
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In §4.3.1 we will find it physically useful to distinguish between distinct ring solutions (we
will call these large and small rings) at the same values of conserved charges (energy and
angular momentum), rather than the parameters vo and Ω̃.

4.2.4 Thermodynamic potentials

In this subsection, we compute the thermodynamic potentials (energy, angular
momentum, entropy, etc.) for the spinning plasmaball and plasmarings themselves, rather
than their constituent plasma. This includes contributions from the kinetic energy of the
plasma as well as its internal energy.

The constitutive relations we find are predictions for, e.g., entropy as a function
of mass and angular momentum of the dual gravity solutions.

We can define some dimensionless variables

ln Z̃gc =
lnZgc

παTc
2(ξ′)2

, Ẽ =
E

παTc
3(ξ′)2

, L̃ =
L

παTc
3(ξ′)3

, S̃ =
S

παTc
2(ξ′)2

, (4.26)

This ensures that dẼ = T̃dS̃ + Ω̃dL̃ and −T̃ ln Z̃gc = Ẽ − Ω̃L̃− T̃ S̃.
These can be computed using (2.39) and (2.40). It is helpful to note that

S̃ =

(
∂(T̃ ln Z̃gc)

∂T̃

)
Ω̃

=

∣∣∣∣∣∣
(
∂(T̃ ln Z̃gc)

∂α

)
β

(
∂Ω̃
∂α

)
β(

∂(T̃ ln Z̃gc)
∂β

)
α

(
∂Ω̃
∂β

)
α

∣∣∣∣∣∣∣∣∣∣∣∣
(
∂T̃
∂α

)
β

(
∂Ω̃
∂α

)
β(

∂T̃
∂β

)
α

(
∂Ω̃
∂β

)
α

∣∣∣∣∣∣
,

L̃ =

(
∂(T̃ ln Z̃gc)

∂Ω̃

)
T̃

=

∣∣∣∣∣∣
(
∂T̃
∂α

)
β

(
∂(T̃ ln Z̃gc)

∂α

)
β(

∂T̃
∂β

)
α

(
∂(T̃ ln Z̃gc)

∂β

)
α

∣∣∣∣∣∣∣∣∣∣∣∣
(
∂T̃
∂α

)
β

(
∂Ω̃
∂α

)
β(

∂T̃
∂β

)
α

(
∂Ω̃
∂β

)
α

∣∣∣∣∣∣
,

(4.27)

where α and β are the two parameters of the solutions.
We present the results of these computations in the next two subsections.

Spinning ball

Partition function

ln Z̃gc = − v
5/4
o (Ω̃v2

o + Ω̃ + v3
o)

Ω̃2(Ω̃ + vo)1/4
√

1− v2
o

. (4.28)

Energy

Ẽ =
4v2

o − v4
o + 5Ω̃vo − Ω̃v3

o

Ω̃2
. (4.29)
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Angular momentum

L̃ =
2v4

o + 2Ω̃v3
o

Ω̃3
. (4.30)

Entropy

S̃ =
4v2

o

Ω̃2

√
1− v2

o

(
1 +

Ω̃
vo

)3/4

. (4.31)

Spinning ring

Partition function

ln Z̃gc = −(vo + vi)3(1− vovi)[1− vovi(2− v2
o + vovi − v2

i )]5/4

v2
ov

2
i (vo − vi)

√
(1− v2

o)(1− v2
i )(2− v2

i − v2
o)2

. (4.32)

Energy

Ẽ =
(2− vo − vi)(2 + vo + vi)(vo + vi)(vovi + 1)[1− vovi(2− v2

o + vovi − v2
i )]

v2
ov

2
i (vo − vi)(2− v2

o − v2
i )2

. (4.33)

Angular momentum

L̃ =
2(vo + vi)(v2

o + v2
i − 2v2

ov
2
i )[1− vovi(2− v2

o + vovi − v2
i )]2

v3
ov

3
i (vo − vi)2(2− v2

o − v2
i )3

. (4.34)

Entropy

S̃ =
4
√

(1− v2
o)(1− v2

i )(vo + vi)[1− vovi(2− v2
o + vovi − v2

i )]5/4

v2
ov

2
i (vo − vi)(2− v2

o − v2
i )2

. (4.35)

4.3 Solutions at fixed energy and angular momentum

4.3.1 Existence

The various regions of existence of the plasmaball, thin plasmaring and thick
plasmaring in the Ẽ-L̃ plane are drawn schematically in fig.4.3.

The ball solution exists over a region C in the Ẽ-L̃ plane. At the boundary of the
region C the ball solution vo attains its maximum value of unity. Using (4.29,4.30) we find
an analytic expression for the boundary of C:

L̃ =
2
27

[
(3Ẽ + 4)3/2 − 9Ẽ − 8

]
∼ 2Ẽ3/2

33/2
for large Ẽ . (4.36)

From (4.22), we see that balls on this boundary saturate the extremality bound (i.e. have
zero temperature).

Like the balls, rings of a fixed energy have a maximum value of angular momentum.
Rings at the edge of this bound (the boundary between O and A in fig.4.3b) have vo = vi = 1
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O - no solutions, A - 1 ring, B - 2 rings, C - 1 ball.

(a)

C

Ẽ
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Figure 4.3: Regions where (a) ball and (b) ring solutions exist.

and so are extremal (see (4.25)) and of zero width. Using (4.33,4.34) the O-A boundary is
given by

L̃ =
Ẽ2

16
, (4.37)

(this expression is valid only for Ẽ > 8, L̃ > 2; at lower energies Ω̃ exceeds unity).
As we lower angular momentum of the solution, this ring moves away from ex-

tremality and increases in width. At a particular angular momentum (the boundary between
region A and region B) a new ring solution comes into existence. The corresponding so-
lution has vo = 1, vi = Ω̃ and so is extremal (see (4.24). Using (4.33,4.34), the analytic
expression for the A-B boundary is given by

L̃ =
2
27

[
(3Ẽ + 1)3/2 − 9Ẽ + 1

]
∼ 2Ẽ3/2

33/2
for large Ẽ , (4.38)

(for Ẽ > 8, L̃ > 2 as above). In the high energy limit Ẽ � 1 the ratio of angular
momentum for the new extremal rings (at the A-B boundary) and extremal plasmaball
tends to unity, (even though the the difference between angular momenta does not go to
zero). Consequently the leading high energy behaviour of (4.38) and (4.36) is the same in
this limit, as is also clear from fig.4.5. We emphasise that, for our solutions, the extremal
ball and extremal thick ring are not quite identical (as is the case for black holes and small
black rings [20] in flat space) as the inner radius of our extremal thick rings does not vanish.
However, the inner radius of the extremal thick ring is always (for all values of energy) of
the same order as the thickness of the domain wall. As the fluid dynamics approximations
fail precisely under these conditions, it could well be that the new extremal plasmaring and
extremal plasmaball are actually identical configurations.

As we further lower angular momentum, the new ring solution moves away from
extremality; this new solution always has a smaller outer radius than the ‘original’ ring
solution (the solutions that also exists in region A), as shown in fig.4.4. As a consequence,
we refer to these two ring solutions as small and large respectively.

Further lowering angular momentum, we hit the boundary between regions B and
O where the two ring solutions merge into each other. At still lower angular momentum,
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Figure 4.4: Outer radius of large and small rings as a function of angular momentum, L̃,
at fixed energy, Ẽ = 40.

we have no ring solutions. We can think of this as follows: as we vary (vo, vi) for the ring,
(4.33) and (4.34) map out a surface in the Ẽ-L̃ plane. At some point, this surface turns
over, so we have a region of the Ẽ-L̃ plane where there are two branches of ring solutions.
These can be distinguished by the sign of the Jacobian:

large ring:
∂(Ẽ, L̃)
∂(vo, vi)

< 0,

small ring:
∂(Ẽ, L̃)
∂(vo, vi)

> 0,

(4.39)

where

∂(Ẽ, L̃)
∂(vo, vi)

≡

(
∂Ẽ

∂vo

)
vi

(
∂L̃

∂vi

)
vo

−

(
∂L̃

∂vo

)
vi

(
∂Ẽ

∂vi

)
vo

=
2(vo + vi)(1− vovi(2− v2

o + vovi − v2
i ))2

v6
ov

6
i (vo − vi)4(2− v2

o − v2
i )6

V (vo, vi)

(4.40)

where V (vo, vi) is a degree 16 polynomial. The place where the two solutions meet, and
hence the B-O boundary, can be found by setting it to zero. In the high energy/angular
momentum limit, one has

vo → 0, vi → 0,
vi

vo
→ 1

4

(
1 +
√

33−
√

2
(

9 +
√

33
))

,

Ẽ ∼ const.
v4

o

, L̃ ∼ const.
v5

o

,
L̃

Ẽ5/4
→

8

√
1
2

(
11133 + 1837

√
33
)

4 4
√

3
.

(4.41)

The existence of plasmaball and plasmaring solutions in the Ẽ-L̃ plane may thus
be summarised as in fig.4.5.

4.3.2 Validity

As we have described above, plasmaballs and plasmarings are exact solutions to the
relativistic Navier-Stokes equations (supplemented by sharp surface boundary conditions).
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Figure 4.5: Regions where ball and ring solutions exist.

However these equations of fluid dynamics accurately capture the dynamics of the fluid
plasma only under certain conditions. In our discussion we have assigned a well defined
pressure and temperature to the fluid at each point in space. Clearly this procedure is valid
only when the variation of these thermodynamic quantities is small over the thermalisation
length scale of the fluid (4.10).

Second, we have treated the surface of the plasma as sharp; in reality this surface
has a thickness of order ξ (see (4.13)). Consequently, our treatment of the surface is valid
only when its deviation from a straight line occurs on scales large compared to ξ ∼ ξ′

(higher derivative contributions to the surface stress tensor, which we have ignored in our
treatment, would become important if this were not the case); further we must also require
that only a small fraction of the fluid should reside in surfaces.

Thirdly, we have ignored the fact that the surface tension is a function of the fluid
temperature at the surface, and simply set σ = σ(Tc). This is valid provided that T /Tc ≈ 1
at all surfaces. When this is the case, the pressure will be small compared to ρc (see (4.8)).
Then, (2.31) tells us that the extrinsic curvature of the surface must be small compared to
1/ξ, which is the same as the previous condition.

Finally, the fluid evolution equations, by their very nature, track mean velocities
and energy densities, ignoring fluctuations. In our context this approximation is justified by
large N ; fluctuations are suppressed by powers of 1/N2, dual to the suppression of quantum
metric fluctuations in the bulk.

We can estimate the scale over which thermodynamic quantities vary as the dis-
tance over which the fractional change in the temperature is one. As the temperature is
proportional to γ, we should look at

1
‖∇ ln γ‖

=
1− v2

Ωv
.

At temperatures close to Tc, where our other approximations are valid, we have lmfp ∼ ξ′.
Therefore, we require that the ratio of the above quantity to ξ′ is large. As this takes its
minimum value at the outer surface, the condition for the validity of the equations of fluid
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dynamics may be estimated to be

(∆u)−1 ≡ 1− v2
o

Ω̃vo

� 1 . (4.42)

Our treatment of the surface as a zero-thickness object is valid if

{ro, ri, ro − ri} � ξ′.

(for the ring, the ro inequality in the equation above follows automatically from the either
of the other two inequalities). This condition can be rewritten in terms of our dimensionless
variables as

r̃o � 1 for the ball, {r̃i, r̃o − r̃i} � 1 for the ring. (4.43)

In fig.4.6, we have plotted a sample of the quantities ln(1/∆u), ln(r̃i), ln(r̃o − r̃i)
and ln(r̃o) as a function of energy and angular momentum for the thin ring, thick ring
and ball. The full set of plots can be found in [2]. From the figure we observe that these
quantities are large (and so the fluid dynamics approximations of this chapter are accurate)
when our rings and balls have large energy and we stay away from the extremality bounds.
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Figure 4.6: Plots of (a) ln(1/∆u) for balls, (b) ln(r̃o − r̃i) for (a) large rings, and (c) ln(r̃i)
for small rings.

4.3.3 Global stability and phase diagram

Recall that (see fig.4.5) at fixed values of energy and angular momentum, we have
either 0, 1 or 3 plasmaball / plasmaring solutions. At those values of charges for which
multiple solutions exist, it is natural to inquire which of these solutions is entropically
favoured. In fig.4.7(a) we have plotted the entropy of plasma ball and plasmaring solutions
as a function of angular momentum at fixed energy.

Note that, when it exists, the small ring always carries lower entropy than both
the big ring and the plasmaball. At low enough angular momentum the plasmaball is the
only solution. This solution continues to be entropically dominant (upon raising the angular
momentum) over an interval, even after the new ring solutions are nucleated. At a critical
angular momentum, however, the entropy of the large ring equals and then exceeds the
entropy of the plasmaball (all three ring solutions continue to exist in a neighbourhood
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PH–phase boundary, ELR–extreme large ring, EB–extreme ball, ESR– extreme small ring,
LSM–large/small ring merger.
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Figure 4.7: (a) Entropy, S̃, as a function of angular momentum, L̃ for fixed energy, Ẽ = 40.
(b) Phase boundary with existence boundaries.

about this point). The large ring is the entropically dominant solution at all larger angular
momenta.

The phase boundary can be seen in fig.4.7(b). In the high energy/angular momen-
tum limit4

Ball: vo → 0, Ω̃→ 0,
Ω̃
v3

o

→ a = 0.273243,

Ring: vo → 0, vi → 0,
vi

vo
→ b = 0.506128,

(4.44)

with vo(ring)
vo(ball = 4

√
a2(b+1)
4b2(1−b) = 0.68658. We have

Ẽ ∼ const.
v4

o

, L̃ ∼ const.
v5

o

,
L̃

Ẽ5/4
→ 1

2
√

2a
= 0.676364 . (4.45)

4.3.4 Comparison with black rings in flat 5D space

As we have explained in the introduction, the plasmaball and plasmaring solutions
of this chapter are dual to black holes and black rings in the background (4.1). Unfortunately
the corresponding gravitational solutions have not yet been constructed; however exact
black ring solutions to the vacuum Einstein equations in 5 dimensions, were obtained in
[20] (see [21] for a review). These solutions were further studied in [84]. In this subsection
we compare the properties these black rings and black holes with our plasmaballs and
plasmarings, and find broad qualitative agreement between the two. While we expect the
properties of plasmaballs and plasmarings to match quantitatively with those of black holes
and black rings in the background (4.1), we could not hope to find better than qualitative
agreement with the properties of the same objects in flat space.

In fig.4.8 we have presented a schematic plot for the existence regions and phase
diagram of black hole and black ring solutions in 5 dimensional flat space. This figure looks

4Analytically, a =
2b
(
4b(1−b)+

√
1−b2(1+4b+b2)

)
1+9b+10b2+42b3+9b4+b5

and 4− 7b− 8b2 + 10b3 + 4b4 + b5 = 0.



78 Chapter 4: Plasmarings as dual black rings

A’ - thin black ring, B’ - thin black ring, thick black ring and black hole, C’ - black hole.

(a)

A’
B’

C’

E

L
phase boundary

(b)
0.0 0.2 0.4 0.6 0.8

0

1

2

3

4 Black hole

Small black ring

GJ

(GM)3/2

GS

(GM)3/2

Large black ring

Figure 4.8: (a) Existence regions and (b) phase diagram for black holes/rings in five dimen-
sional flat space.

fairly similar to figs.4.5,4.7. The major qualitative difference is the absence of the analogue
of the region O (see fig. 4.5) in fig. 4.8. Thus unlike thin black rings in flat 5 dimensional
space, plasmarings (and so black rings in Scherk-Schwarz AdS5) have an upper bound to
their angular momentum at fixed energy.5

It is interesting to pursue the comparison between these solutions in more detail.
The gravitational analogue of fig.4.7 (presented as [20, fig.3] AND fig.4.8(B)) looks fairly
similar to our figure. The main qualitative differences are: unlike for plasmarings, the
entropy of the large flat space black ring doesn’t go to zero at a finite angular momentum
(it asymptotes to zero at infinity) and the entropy of the small flat space black ring and black
hole go to zero at exactly the same point instead of the slightly different values that we see.
We expect that first of these differences reflects a physical difference between black rings
in flat space and Scherk-Schwarz compactified AdS5, the second difference is an artefact of
the breakdown of the fluid dynamics approximation for extremal small rings (whose inner
radius is always of order the surface thickness).

In even greater detail, we could quantitatively compare the boundaries between
regions O, A, B and C (see fig.4.3) which correspond to th phase boundary (PH), the extreme
large ring (ELR), the extreme ball (EB), the extreme small ring (ESR) and the large/small
ring merger (LSM). These curves, as well as the phase boundary, may be parameterised by
L = xEy at large energies.

For black holes and black rings in flat space yLSM = yEB = yESR = yPH = 3
2 . For

our plasmaballs and plasmarings, as one can see in (4.36-4.41) and (4.45) ,for large energy,
we get yELR = 2, yESR = yEB = 3

2 , yLSM = 5/4 and yPH = 5/4 (see table 4.1).
It is meaningless to compare the x’s directly, as they are dimensionful quantities.

However, when two y’s have the same value, the ratio of the corresponding x’s is dimension-
less and may be compared. For black rings xESR = xEB =

√
32G/27π, xLSM =

√
G/π and

xPH =
√

256G/243π, so xESR/xEB = 1, xEB/xLSM =
√

32/27 and xLSM/xPH = 9
√

3/16.
For plasmaballs and plasmarings, if we used the dimensionless quantities (4.26), we find

5This upper bound was expected for black rings in AdS. The negative cosmological constant has a similar
effect to the dipole charge of [85]. We thank R. Emparan for explaining this to us.
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Quantity Black rings Plasmarings
yELR N/A 2
yESR 3/2 3/2
yEB 3/2 3/2
yLSM 3/2 5/4
yPH 3/2 5/4

xESR/xEB 1 1
xEB/xLSM

√
32/27 N/A

xLSM/xPH 9
√

3/16 ≈ 0.97 0.91

Table 4.1: Comparison of scalings of boundaries for black rings and plasmarings.

xELR = 1
16 , xESR = xEB = 2/33/2, xLSM ≈ 0.60 and xPH ≈ 0.69. Therefore xESR/xEB = 1

and xLSM/xPH ≈ 0.90.
This is summarised in table 4.1. Note that the extremality boundaries, ELR, EB

and ESR, occur precisely where at least one of the approximations discussed in §4.3.2 breaks
down. Therefore, nothing quantitative about these boundaries should be trusted.

4.3.5 Turning point stability

We have seen in §4.3.3 that the spinning plasma solution of maximal entropy
is the plasmaball (at low angular momentum) or the large plasmaring (at high angular
momentum). The ‘phase transition’ between these two solutions may be thought of as
being of first order (in the sense that the two competing solutions are different at the phase
transition point). The small plasmaring is entropically subdominant to both the plasmaball
and the large plasmaring whenever it exists.

This situation appears to lend itself to a description in terms of a Landau diagram,
with the entropy given by a function of the (unidentified) order parameter that has two
maxima (the plasmaball and the large plasmaring) separated by a single minimum (the
small plasmaring). This analogy suggests - and we conjecture that - the small plasmaring is
always dynamically unstable, while the plasmaball and large plasmarings are dynamically
stable with respect to axisymmetric fluctuations.

An honest verification of our conjecture would require a study of the spectrum of
linear fluctuations about our plasmaball and plasmaring solutions, an analysis that we have
not carried out. In this subsection, however, we present some evidence for our conjecture,
using the ‘turning point’ stability analysis of [86] (see [87] for discussion and references).

Consider a (not necessarily stable) equilibrium configuration that changes from
being stable to unstable under continuous variation. The configurations we apply these
considerations to are plasmarings; according to our conjecture these rings are stable to
axisymmetric fluctuations when large but become unstable to the same modes when small.
At the boundary of stability, the matrix of second derivatives of the entropy with respect to
off shell variations (or ‘order parameters’) of the configuration under question develops a zero
eigenvalue. In the neighbourhood of this special point, a small change in the thermodynamic
potentials of the solution give rise to a large change in the order parameter along the zero
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eigenvalue direction (as such a change is entropically inexpensive). As argued in [88–91],
this results in a divergent contribution to the second derivative of the equilibrium entropy
as a function of equilibrium thermodynamic quantities (for instance the angular momentum
at fixed energy) proportional to the negative inverse of the small eigenvalue.

It follows that a configuration that changes stability has divergent second deriva-
tives of entropy with respect to - say - angular momentum. Moreover the sign of this second
derivative is positive in the ‘more stable’ phase and negative in the ‘less stable’ phase. Note
that the turning point method gives information about the change in the number of unstable
directions about a solution, but does not yield information about the absolute number of in-
stabilities. Moreover, this method only links vertical tangents - and not vertical asymptotes
- in the graph of the first derivative of entropy with respect to (say) angular momentum vs.
angular momentum (a conjugacy diagram) to instabilities, as vertical asymptotes occur at
boundaries of equilibrium solution space instead of separating solutions of differing degrees
of stability.

The turning point method is useful because it yields information about stability
properties, with respect to off shell fluctuations, of phases, using information only about on
shell variations. It is especially useful in the study of nonextensive systems like black holes,
for which negative specific heats do not necessarily imply dynamical instability (note that
we’re working with the microcanonical ensemble, unlike the grand-canonical considerations
of [92]). This method has been used to study the stability of black rings in 5 dimensions
[87, 93]; it suggests that small black rings are always unstable, while large black rings are
more stable in that context. This result corroborates the explicit linear fluctuation analysis
about the flat space black rings [84].

We now proceed to apply the turning point method to our plasmarings. quantities
β and ψ via

dS̃ = β dẼ + ψ dL̃. (4.46)

One can show that (
∂β

∂Ẽ

)
L̃

=
∂(β,L̃)
∂(vo,vi)

∂(Ẽ,L̃)
∂(vo,vi)

,

(
∂ψ

∂L̃

)
Ẽ

=
∂(Ẽ,ψ)
∂(vo,vi)

∂(Ẽ,L̃)
∂(vo,vi)

. (4.47)

Therefore, one would expect a vertical tangent to occur at the small-ring/large-ring bound-
ary as discussed in (4.40).

In fig.4.9 we have plotted ψ against angular momentum at fixed energy for our
ring solutions. This graph has a single turning point, precisely at the point at which the
large ring turns into a small ring. The slope of the curve turns from positive (for the large
ring) to negative (for the small ring) in upon passing through the turning point, consistent
with our conjecture about the stability properties of plasmarings. More generally, fig.4.9
is qualitatively similar to the equivalent graph of [87, fig.6(b)] for black hole and black
rings in flat 5 dimensional space, except that the large black ring curves back down as we
increase L̃. This difference has no impact on stability analysis, as the turning point method
links instabilities to vertical tangents rather than horizontal tangents (even though a heat
capacity/susceptibility changes sign as one crosses a horizontal tangent).

In conclusion, the turning point method indicates that the small ring has an addi-
tional instability as compared to the large ring. Note that it is perfectly possible that both
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Figure 4.9: Conjugacy diagram: ψ as a function of angular momentum, L̃ for fixed energy,
Ẽ = 40.

the large and the small ring are unstable, for example to fluctuations that break rotational
symmetry.

4.4 Discussion

In this chapter we have emphasised that the AdS/CFT correspondence implies a
duality between nonsingular classical gravitational solutions with horizons, and solutions to
the boundary equations of fluid dynamics. This connection has previously been utilised by
several authors to obtain gravitational predictions for various fluid viscosities and conduc-
tivities (see, for instance, [25] and references therein). The new element in our work is the
incorporation of boundaries separating the fluid from the vacuum into the Navier-Stokes
equations. This feature (which relies on the explicit gravitational construction of the do-
main wall in [50]) allowed us to study stationary finite energy lumps of plasma, which are
dual to localised black holes and black rings in the bulk.

All our work (and easily imagined generalisations) apply to confining field theo-
ries. Stationary black holes in such backgrounds sit at the IR ends of the geometry; the
boundary shadow of such black holes is a lump of deconfined fluid of size R+O(Λ−1

gap). The
fluid dynamic equations accurately describe such lumps only when R � Λ−1

gap, in the same
limit the fluid yields an approximately local representation of the horizon. Consequently,
the AdS/CFT correspondence provides an approximately local fluid description of horizon
dynamics in the long wavelength limit.

All the specific results of this chapter are based on the equations of state (4.7),
which are valid for the high temperature phase of Scherk-Schwarz compactified conformal
field theories (dual to gravity in Scherk-Schwarz compactified AdS space). However the
only qualitative feature of this equation of state that was important for the existence of
the solutions of this chapter is that the fluid pressure vanishes at finite energy density.
As discussed is §4.3.2, our solutions are only valid for temperature close to this critical
temperature. As a consequence such solutions ‘sample’ only the fluid equation of state only
in the neighbourhood around the zero pressure point, and so would exist in any fluid whose
pressure vanishes at finite energy density.

Our results suggest several directions for future research. It would be interesting to
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analyse the stability of small fluctuations about the solutions presented in this chapter. As
we have mentioned in §4.3.5, we expect the small ring to be unstable to axisymmetric fluid
fluctuations, while we expect the ball and the large ring to be stable to such fluctuations.
However, it is quite possible that such an analysis would reveal that the large ring solutions
of this chapter have a Plateau-Rayleigh type instability that maps to Gregory-Laflamme
instabilities (see also [29])6 of the dual bulk solutions.

Although we have not mentioned this in the text, there exists a scaling limit
in which the thin plasmarings solutions simplify greatly.7 In this limit (Ω̃ → 0 with vi

fixed), the 3D plasmaring reduces to a straight strip of moving fluid. The fluid pressure
vanishes on this strip, and the fluid velocity is constant across the strip (more precisely
vo = vi + 1−v2

i

2v2
i

Ω̃ + O(Ω̃2) so that r̃o − r̃i = 1−v2
i

2v2
i

+ O(Ω̃)). Similarly, there should exist
scaling limit under which the 4 dimensional plasmaring reduces to an infinite stationary
cylinder, with fluid flow along the axis. Various dynamical properties of large rings (e.g.
the potential Gregory-Laflamme type instability alluded to in the previous paragraph) will
probably prove easiest to study in this scaling limit. We will present an analysis of the
fluctuations of these solutions in Ch.5.

In five dimensional gravity there are a number of interesting solutions with dis-
connected horizons, such as black saturns [94], with a black hole surrounded by a black
ring, and di-rings [95–98]. These solutions play a significant role in the phase diagram [99].
We note that the construction of such solutions in fluid mechanics is trivial – disconnected
lumps of plasma do not affect each other at all. This may sound surprising from the grav-
itational perspective, as one would expect black holes to attract each other. However, in
the AdS soliton background the spectrum of the graviton has a gap Λgap ∼ ξ−1. Therefore
one would expect the gravitational attraction to die off exponentially rather than the usual
power law, e−Λgapr ∼ e−r/ξ. As the surface tension approximations is only valid when the
separation of these lumps of plasma is much larger than the surface thickness, r � ξ, the
gravitational attraction would be negligible.

One issue concerning saturns is thermal equilibrium between the components [99].
This would require the temperature and angular velocity of the components to be equal (see
also [100]). It was pointed out in [100] that such solutions do not exist in our framework
– the temperature and angular velocity determine the outer radius of the ball/ring com-
ponents in exactly the same way (see (4.22) and (4.24)) so the components would have to
overlap. However, demanding thermal equilibrium between the disconnected components
is only reasonable when the time scale of energy/angular momentum exchange between the
components is much shorter than the rate of Hawking leakage to infinity. This limit may
not be compatible with the demand that the separation of the components is much larger
than the surface thickness.

6We thank T. Wiseman for suggesting this.

7We thank T. Wiseman again for pointing this out to us.



Chapter 5

The stability of plasmarings and
strings in 2+1 dimensions

In this chapter we will study small fluctuations about the plsamaball and plasma
ring solutions discussed in Ch.4, warming up with a study of the fluctuations of the 2+1
dimensional plasmastring – an infinite strip of deconfined plasma surrounded be the confined
phase.

Of particular interest are fluctuations whose frequency have a positive imaginary
part. As mentioned in §1.1, the question of instabilities of extended black objects has been
one of the most controversial issues in general relativity, in particular the question of their
endpoint (see [40] for a review). The difficult nature of these questions in the gravitational
setting leads us to see if we can get any insight into these questions using our holographic
fluid mechanics approach. There is a well known instability in fluid mechanics, the Plateau-
Rayleigh instability, for a tube of fluid to split into droplets. Most of the previous discussion
has been for non-relativistic incompressible fluids, for which it boils down to minimising
surface area at fixed volume. In our situation, the fluid is very much compressible and
relativistic corrections could be significant, so we will perform the analysis anew.

We will only be working at the linearised level, so we will not be able to answer
any questions regarding the endpoint of any instabilities, we will only be able to see if the
instabilities exist. It is worth noting that, when the fluid is water, the issue of the endpoint
of the Plateau-Rayleigh instability was settled experimentally by Savart. We have all seen
a stream of water falling from a tap split into droplets, however one might worry that there
is a thin neck of water connecting the droplets that one fails to see. Savart ruled this out
by quickly flicking “a narrow metal object” (probably his sword) between the droplets and
seeing if it was wet afterwards. As it came out dry, he concluded that there was no such
neck. This is a remarkably simple way of arguing that the evolution of black strings will
lead to a naked singularity!

We will also be restricting attention to fluctuations for which ω2 is real, i.e. the
frequency has either real or imaginary parts but not both. Studying complex frequencies
would require solving the real and imaginary parts of our equations simultaneously, which
would require much more work.

In addition, we will also be ignoring the dissipative part of the stress tensor (2.13).

83
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This is common in elementary treatments of the Plateau-Rayleigh instability [101] and
should be a reasonable approximation for low enough frequencies. In any case, one would
only expect dissipation to slow down instabilities and not create them. Note that when we
keep only the perfect fluid part of the stress tensor, (2.25) reduces to (2.31)

P|surface = σΘ. (5.1)

This is slightly different to the situation of (2.31). In that case there was no time depen-
dence, so Θ could be interpreted as a spatial intrinsic curvature. In this case we do have
time dependence, so Θ is a space-time extrinsic curvature.

When it is simply a matter of minimising surface area, the Plateau-Rayleigh in-
stability does not exist in 2+1 dimensions. For a wavy fluctuation in higher dimensions
one can compensate for the increase in surface area due to a wavy line being longer than
a straight line with the decrease in surface area due to the smaller radius of the tube in
the trough of the wave. In 2+1 dimensions one only has the increase in surface area due to
a wavy line being longer than a straight line. As our fluid is compressible, this reasoning
cannot be taken over directly, however we will find that all fluctuations are stable in §5.2.

In §4.3.5, we presented a thermodynamic argument that suggested that the ball
and large ring are stable to axisymmetric fluctuations, whereas the small ring is unstable,
much like their asymptotically flat gravitational counterparts. This is almost confirmed
in §5.3, we find no axisymmetric instabilities for the ball and large ring and we do find an
axisymmetric instability for the small ring. However, this instability does not appear exactly
where the large ring and small ring meet. We do not see any sign of wavy instabilities. A
wavy instability with complex frequency was found for the plasmaball in [102], which was
missed by our restriction to pure real or pure imaginary frequencies. We note that the
usual argument that there must be a zero mode must occur when the instability develops
doesn’t apply to complex frequencies, so their conclusion that there is a branch of lobed
configurations need not be true.

The plan of this chapter is as follows: In §5.1, we collect some definitions for the
thermodynamic properties of a generic fluid that is close to a first order deconfinement phase
transition that will be useful in §5.2, where we look at the stability of the plasmastring in
2+1 dimensions. In that section we will consider arbitrary equations of state that have first
order deconfinement phase transitions as well as the Scherk-Schwarz black-brane equations
of state considered previously (4.8). In §5.3 we will look at the fluctuations of the plasmaball
and plasma ring solutions discussed in Ch.4.

5.1 Thermodynamics near the phase transition

In §5.2, we will look at infinitesimal fluctuations of a generic fluid that is at the
temperature of its first order deconfinement phase transition. It will be useful to collect a
few formulae describing the thermodynamics close to the phase transition here.

Consider a large N confining gauge theory with a first order deconfining phase
transition. As the free energy of the deconfined phase is of order N2 compared to the
confined phase, the phase transition occurs when the free energy of the deconfined phase
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vanishes to leading order in N . At this temperature Tc (see (2.2)):

P = 0, ρ = ρc, s = sc =
ρc

Tc
. (5.2)

For a small deviation, T = Tc(1 + δτ),

P = ρc δτ +O(δτ2), ρ = ρc + C Tc δτ +O(δτ2), s =
ρc

Tc
+ C δτ +O(δτ2), (5.3)

where C = Tc s
′(Tc) is the heat capacity at the critical temperature. We also define the

speed of sound

c2
s =

ρc

CTc
. (5.4)

For thermodynamically stable fluids, with C > 0, cs is real. For unstable fluids, with C < 0,
cs is imaginary.

The fluids we consider in §5.2.2 and §5.3, constructed from a Scherk-Schwarz
compactification of a strongly coupled 4 dimensional conformal theory, have equations of
state of the given by (4.8). With this equation of state

ρc = 4αTc
3, C = 12αTc

2, cs =
1√
3
. (5.5)

5.2 Plasmastring in 2+1 dimensions

In this section we will study the stability of a strip of plasma of width W . When the
extended direction is infinite, this has topology B1×R. Following the usual circle-fibration
method, the dual black object has topology S2 × R, i.e. it is a black string.

We work in 2+1 dimensions with one direction compactified, y ∼ y + 2πl. We
study the stability of the plasmastring: a strip of plasma that wraps the y direction and
fills 0 < x < W . We assume that l,W � lmfp, ξ. The fluid and surfaces are described by

f0 = x, f1 = W − x,
uµ = (1, 0, 0) T = Tc.

(5.6)

5.2.1 Thermodynamics

In this section, we compare the thermodynamics of the plasmastring to an array
of n plasmaballs of radius R. In particular, we ask which has the larger entropy at fixed
energy.

Note that there are no static wavy strings in 2+1 dimensions. For a static fluid, the
temperature and velocity are constant and the dissipative part of the stress tensor vanishes.
This means that, using (2.31) as a boundary condition, we see that the surface must have
constant curvature. In two dimensions, the only surface of constant curvature is a circle (or
a line).
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From (2.31), we see that the plasmastring must have zero pressure, therefore T =
Tc. This means

Estring = 8παTc
3Wl + 4πσl = 8παTc

3(Wl + 2ξl),

Sstring = 8παTc
2Wl.

(5.7)

For the balls, (2.31) gives

P =
α

Tc

(
T 4 − Tc

4
)

=
σ

R
=⇒ T 4 = Tc

4

(
1 +

4ξ
R

)
,

therefore

Eball =
α

Tc

(
3T 4 + Tc

4
)
nπR2 + 2nπσR = 4nπαTc

3(R2 + 5ξR),

Sball = 4
α

Tc
T 3nπR2 = 4nπαTc

2 (R+ 4ξ)3/4R5/4.
(5.8)

Equating the energies determines the radius of the ball

R =

√
2Wl + 4ξl

n
+

25ξ2

4
− 5ξ

2
. (5.9)

Introducing variables w = W/l and ε = ξ/l, the entropy difference is

Sball − Sstring

4παTc
2l2

= n

(√
2w + 4ε

n
+

25ε2

4
− 5ε

2

)5/4(√
2w + 4ε

n
+

25ε2

4
+

3ε
2

)3/4

− 2w

= 2ε
(

2−
√

2nw
)

+O
(
ε2
)
.

(5.10)

We see that, for w > 2 the plasmastring is entropically favoured, whereas for w < 2 a single
plasmaball is preferred. An array of n balls becomes preferable to a string when w < 2/n,
though it is always preferable to have n = 1.

This discussion was for the microcanonical ensemble. For the canonical ensemble,
the corresponding question is trivial: we cannot put the string and the ball at the same
temperature, as the string always has T = Tc and the ball has T > Tc.

5.2.2 Fluctuations

We now turn to a time-dependent analysis of small fluctuations of the plasmas-
tring. We will see if the frequency these fluctuations can have positive imaginary part,
corresponding to instabilities.

We work to fist order in small fluctuations of the form

f0 = x− e−iωt+ikyyδx0, f1 = W + e−iωt+ikyyδx1 − x,

uµ =
(

1, e−iωt+ikyyδu(x), e−iωt+ikyyδv(x)
)
T = Tc

(
1 + e−iωt+ikyyδτ(x)

)
,

(5.11)
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where ky = n/l. To first order, the normalisation u2 = −1 is maintained.
Ignoring dissipative terms, to first order in the fluctuations, we have

Tµνperfect =

ρc 0 0
0 0 0
0 0 0

+

c−2
s δτ(x) δu(x) δv(x)
δu(x) δτ(x) 0
δv(x) 0 δτ(x)

 ρce−iωt+ikyy,

∇µTµνperfect =

ikyδv(x)− ic−2
s ωδτ(x) + δu′(x)

δτ ′(x)− iωδu(x)
−i(ωδv(x)− kyδτ(x))

 ρce−iωt+ikyy.

(5.12)

So, to zeroth order in lmfp, (2.3) is solved by

δτ(x) = eikxxδτ+ + e−ikxxδτ−,

δu(x) =
kx
ω

(
eikxxδτ+ − e−ikxxδτ−

)
,

δv(x) =
ky
ω

(
eikxxδτ+ + e−ikxxδτ−

)
,

where k =

√
ω2

c2
s

− k2
y. (5.13)

Using the notation of (2.27), the boundary conditions (2.20) and (5.1), to first order in the
fluctuations, become

uµ∂µf0

∣∣∣∣
f0=0

=
[
iωδx0 +

kx
ω

(δτ+ − δτ−)
]

e−iωt+ikyy,

P − σΘ
∣∣∣∣
f0=0

=
[
ξ(k2

y − ω2)δx0 + (δτ+ + δτ−)
]
ρce−iωt+ikyy,

uµ∂µf1

∣∣∣∣
f1=0

=
[
−iωδx1 −

kx
ω

(eikxW δτ+ − e−ikxW δτ−)
]

e−iωt+ikyy,

P − σΘ
∣∣∣∣
f1=0

=
[
ξ(k2

y − ω2)δx1 − (eikxW δτ+ + e−ikxW δτ−)
]
ρce−iωt+ikyy.

(5.14)

We can eliminate δτ±

δτ+ =

[
ξkx(ω2 − k2

y)− iω2

2kx

]
δx0, δτ− =

[
ξkx(ω2 − k2

y) + iω2

2kx

]
δx0 (5.15)

leaving [
ξkx(k2

y − ω2)
ω

sin(kxW ) + ω cos(kxW )

]
δx0 − ω δx1 = 0[

ξ(k2
y − ω2) cos(kxW )− ω2

kx
sin(kxW )

]
δx0 + ξ(k2

y − ω2) δx1 = 0

(5.16)

which has nontrivial solutions when

2ξkxω2(k2
y − ω2) cos(kxW ) +

[
ξ2k2

x(k2
y − ω2)2 − ω4

]
sin(kxW ) = 0. (5.17)
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Figure 5.1: Values of ν vs. w for unstable homogenous modes.

Note that there is always a trivial solution with ky = ω = 0. This has δτ(x) =
δu(x) = δv(x) = 0 and δx0, δx1 arbitrary. This just corresponds to changing which static
solution we’re perturbing from. We will ignore this solution from now on.

We will now look for unstable modes (i.e. with ω = iν/l, ν > 0) in two special
cases: ky = 0 with c2

s arbitrary; and ky arbitrary with c2
s = 1/3 from (5.5).

Homogeneous mode, arbitrary equation of state

In this section, we will look at modes that are homogeneous in the y direction, i.e.
we set ky = 0, but we leave the equation of state (that appears via c2

s ) arbitrary. We look
for unstable modes, i.e. we take (5.17), substitute k from (5.13) and look for solutions of
the form ω = iν/l, ν > 0:

2csεν cosh
(
νw

cs

)
+
(
c2

s + ε2ν2
)

sinh
(
νw

cs

)
= 0. (5.18)

For thermodynamically stable fluids with C > 0, there are no real solutions to this equation,
as both terms have the same sign. For thermodynamically unstable fluids with C < 0, we
have

2 |cs| εν cos
(
νw

|cs|

)
+
(
|cs|2 − ε2ν2

)
sin
(
νw

|cs|

)
= 0. (5.19)

We plot some of the roots in fig.5.1. Note that the regime of validity is w/ε� 1 and εν � 1,
which corresponds to the bottom right of the graph.

The fact that thermodynamically stable strings are mechanically stable and ther-
modynamically unstable strings are mechanically unstable agrees with the Gubser-Mitra
conjecture [77, 103]. This instability is essentially due to the unstable sound mode, as
pointed out in [104] this occurs when the heat capacity is negative.
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Wavy modes, black brane equation of state

In this section, we will look at modes that are wavy in the y direction, i.e. we allow
ky 6= 0, but we use the special equation of state (4.8), i.e. we set c2

s = 1/3 as in (5.5). We
look for unstable modes, i.e. we take (5.17), substitute kx from (5.13), ky = n/l and look
for solutions of the form ω = iν/l, ν > 0. We also use the notation of (2.27) and (5.10):

2ε ν2(ν2 + n2)
√

3ν2 + n2 cosh
(
w
√

3ν2 + n2
)

+
[
ν4 + ε2(ν2 + n2)2(3ν2 + n2)

]
sinh

(
w
√

3ν2 + n2
)

= 0, (5.20)

which has no real solutions.
Note that this does not mean that the dual black string is stable. We have been

restricting attention to a particular subset of fluctuations — those that do not involve the
Scerk-Schwarz circle — as all others are outside the regime of validity of fluid mechanics.
This only tells us that any Gregory-Laflamme instabilities of these black strings must involve
the Scherk-Schwarz circle.

5.3 Plasmaballs and plasmarings

In this section we will apply the methods of §5.2.2 to the plasmaball and plasmaring
solutions of Ch.4. In §4.3.5, a turning point analysis, along the lines of [87, 93], suggested
that the small ring is unstable to an axisymmetric fluctuation. The point where the large
ring turns into the small ring, where we expect this instability to develop, can be found
by setting the jacobian in (4.40) to zero. We will look for such an instability in §5.3.1. In
flat space, black rings with the radius of the S1 much larger than the S2 are expected to
have non-axisymmetric instabilities [84], as they start to look like boosted black strings. As
we saw above, our plasmastrings do not have these instabilities in 2+1 dimensions, so this
reasoning does not follow through, but we will look for such instabilities in §5.3.1.

We use coordinates (t, r, φ)

ds2 = −dt2 + dr2 + r2dφ2.

The interior of the fluid in the unperturbed solution is described by

T = γT, uµ = γ(1, 0,Ω), γ = (1− Ω2r2)−1/2. (5.21)

The ball and ring have outer surfaces at r = ro. The ring also has an inner surface at r = ri.
These parameters are related to T and Ω by (4.25).

5.3.1 Fluctuations

We look at fluctuations of the form

T = γT
(

1 + δτ(v)e−iωt+inφ
)
,

uµ = γ(1, 0,Ω) + γ(Ω2r2δv(v), iδu(v),Ωδv(v)) e−iωt+inφ,

fo = ro − r + δro e−iωt+inφ,

fi = r − ri − δri e−iωt+inφ.

(5.22)
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It is convenient to define

δr̃o =
δro

ξ′
, δr̃i =

δri

ξ′
, ω̃ = ξ′ω, $ = ω − nΩ, $̃ = ω̃ − nΩ̃. (5.23)

The equation of motion (2.3), to first order in the fluctuations and zeroth order in
lmfp, gives

∇µTµνperfect =
4iαT 4

Tc
γ2e−iωt+inφ× [nΩ

γ2 − 2v2$]δv(v) + [nΩ−(4γ2−1)$
γ2 ]δτ(v) + (6γ2−5)

v Ωδu(v) + Ωδu′(v)
2ivΩδv(v)− i$δu(v)− i Ω

γ2 δτ
′(v)

[nΩ−(2γ2−1)$
γ2 ]Ωδv(v) + [ nΩ

γ2v2 − 4$]Ωδτ(v) + 3(2γ2−1)
v Ω2δu(v) + Ω2δu′(v)

 . (5.24)

We can eliminate δv(v)

δv(v) =
(nΩ− γ2v2$)δτ(v) + 2vγ4Ωδu(v)

$γ2v2
, (5.25)

leaving

d
dv

(
δτ
δu

)
=

 2
v$̃

[
nΩ̃− γ2v2$̃

]
γ2

Ω̃$̃

[
4γ2Ω̃2 − $̃2

]
γ2(3γ2−2)$̃2−[nΩ̃−γ2v2$̃]2

v2γ4Ω̃$̃
− 1
v$̃

[
(2γ2 − 1)$̃ + 2nΩ̃

](δτ
δu

)
. (5.26)

The boundary conditions (2.20) and (5.1), to first order in the fluctuations, are

uµ∂µfo

∣∣∣∣
fo=0

= [$̃ δr̃o + δu(vo)] iγoe−iωt+inφ,

P − σΘ
∣∣∣∣
fo=0

=

[
4v3

oγ
2
oΩ̃ + v2

oω̃
2 − n2Ω̃2 + (1 + 3v2

o)γ2
oΩ̃2

4v2
o

δr̃o + γ4
o T̃

4δτ(vo)

]
× ρce−iωt+inφ,

uµ∂µfi

∣∣∣∣
fi=0

= [$̃ δr̃i + δu(vi)] iγie−iωt+inφ,

P − σΘ
∣∣∣∣
fi=0

=

[
4v3

i γ
2
i Ω̃− v2

i ω̃
2 + n2Ω̃2 − (1 + 3v2

i )γ2
i Ω̃2

4v2
i

δr̃i + γ4
i T̃

4δτ(vi)

]
× ρce−iωt+inφ.

(5.27)

Solving these gives

δτ(vo) =
(v4

o − v2
o)ω̃2 − 4v3

oΩ̃ + (1− v2
o)n2Ω̃2 − (1 + 3v2

o)Ω̃2

4vo(1− v2
o)(vo + Ω̃)

δr̃o,

δu(vo) = −$̃ δr̃o,

δτ(vi) =
(v2

i − v4
i )ω̃2 − 4v3

i Ω̃− (1− v2
i )n2Ω̃2 + (1 + 3v2

i )Ω̃2

4vi(1− v2
i )(vi − Ω̃)

δr̃i

δu(vi) = −$̃ δr̃i.

(5.28)
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For the ball, we have no boundary conditions at fi = 0. Instead, we require δu(0) = 0.
We can write the solution to (5.26) as(

δτ
δu

)
= δτ(vo)

(
α1(v)
β1(v)

)
+ δu(vo)

(
α2(v)
β2(v)

)
, (5.29)

where (
α1(vo)
β1(vo)

)
=
(

1
0

)
,

(
α2(vo)
β2(vo)

)
=
(

0
1

)
, (5.30)

which also solves the boundary conditions (5.28) at v = vo.
For the ball, the boundary condition at v = 0 will have a non-trivial solution when

∆ball ≡ β1(0)
δτ(vo)
δr̃o

+ β2(0)
δu(vo)
δr̃o

= 0. (5.31)

For the ring, the boundary conditions at v = vi will have a non-trivial solution when

∆ring ≡

∣∣∣∣∣α1(vi)
δτ(vo)
δr̃o

+ α2(vi)
δu(vo)
δr̃o

δτ(vi)
δr̃i

β1(vi)
δτ(vo)
δr̃o

+ β2(vi)
δu(vo)
δr̃o

δu(vi)
δr̃i

∣∣∣∣∣ = 0. (5.32)

Axisymmetric modes

In this section, we will concentrate on modes with n = 0. There is always a mode
at ω̃ = 0:

δτ(v) = A(1− v2),
δu(v) = 0,

δv(v) = −A(1− v2),

(5.33)

with (5.28) determining A in terms of δr̃o. For the ring, δr̃i will be determined in terms of
δr̃o. Surprisingly, this does not correspond to changing which solution we expand about.
That would be

δτ(v) =
δT̃

T̃
+

v2

1− v2

δΩ̃

Ω̃
,

δu(v) = 0,

δv(v) =
1

1− v2

δΩ̃

Ω̃
.

(5.34)

These are a solution to (5.24), but they do not appear to be the ω̃ → 0 limit of fluctuations
of the form (5.22).

We can ignore this boring mode by changing variables

δu(v) = −ω̃δû(v). (5.35)

Now the differential equation is

d
dv

(
δτ
δû

)
=

− 2v
1−v2

(1−v2)ω̃2−4Ω̃2

(1−v2)2Ω̃

−3−v2

Ω̃
− 1+v2

v(1−v2)

(δτ
δû

)
, (5.36)
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Figure 5.2: Plot of the conditions (5.40) and (5.41) vs. ω̃2 for (a) the ball and (b) the ring
with vo = 0.8. The fluctuations correspond to positive roots, the unstable modes correspond
to negative roots.

and the boundary conditions are

δτ(vo) =
(v4

o − v2
o)ω̃2 − 4v3

oΩ̃− (1 + 3v2
o)Ω̃2

4vo(1− v2
o)(vo + Ω̃)

δr̃o,

δû(vo) = δr̃o,

δτ(vi) =
(v2

i − v4
i )ω̃2 − 4v3

i Ω̃ + (1 + 3v2
i )Ω̃2

4vi(1− v2
i )(vi − Ω̃)

δr̃i

δû(vi) = δr̃i.

(5.37)

We write the solution to (5.36) as(
δτ
δû

)
= δτ(vo)

(
α1(v)
β̂1(v)

)
+ δu(vo)

(
α2(v)
β̂2(v)

)
, (5.38)

where (
α1(vo)
β̂1(vo)

)
=
(

1
0

)
,

(
α2(vo)
β̂2(vo)

)
=
(

0
1

)
, (5.39)

which also solves the boundary conditions (5.37) at v = vo.
For the ball, the boundary condition at v = 0 will have a non-trivial solution when

∆̂ball ≡ β̂1(0)
δτ(vo)
δr̃o

+ β̂2(0)
δû(vo)
δr̃o

= 0. (5.40)

For the ring, the boundary conditions at v = vi will have a non-trivial solution when

∆̂ring ≡ det

(
α1(vi)

δτ(vo)
δr̃o

+ α2(vi)
δû(vo)
δr̃o

δτ(vi)
δr̃i

β̂1(vi)
δτ(vo)
δr̃o

+ β̂2(vi)
δû(vo)
δr̃o

δû(vi)
δr̃i

)
= 0. (5.41)

We plot these two conditions in fig.5.2. We see that the ring has unstable modes for
certain values of (vo, vi), but not for others. For the ball, we see no signs of any instabilities.
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At the point where a new instability develops, we will have an additional zero-
mode. We can look for this zero-mode by setting ω̃ = 0. The solution of (5.36) is

δτ = A

[
v2 + 1
v2 − 1

]
+B

[
(v2 + 1) log(v) + 2

v2 − 1

]
,

δû = A

[
2v3 + 6v

4Ω̃

]
+B

[
2 log(v)v4 − v4 + 6 log(v)v2 + 8v2 + 1

4vΩ̃

]
.

(5.42)

The boundary conditions (5.37) at v = vo give

A =
4v5

o + 3Ω̃v4
o − 28v3

o − 20Ω̃v2
o − 2(4v3

o + 3Ω̃v2
o + 8vo + 5Ω̃)v2

o log(vo) + Ω̃

4vo(1− v2
o)2(vo + Ω̃)

Ω̃δr̃o,

B =
4v3

o + 3Ω̃v2
o + 8vo + 5Ω̃

2(1− v2
o)2(vo + Ω̃)

voΩ̃δr̃o.

(5.43)

For the ball, if we try to impose the boundary condition at v = 0, we find

lim
v→0

δû =
vo(4v3

o + 3Ω̃v2
o + 8vo + 5Ω̃)

8v(1− v2
o)2(vo + Ω̃)

, (5.44)

so the putative new zero-mode doesn’t exist.
For the ring, imposing the boundary condition at v = vi gives

A =
4v5

i − 3Ω̃v4
i − 28v3

i + 20Ω̃v2
i − 2(4v3

i − 3Ω̃v2
i + 8vi − 5Ω̃)v2

i log(vi)− Ω̃

4vi(1− v2
i )2(vi − Ω̃)

Ω̃δr̃i,

B =
4v3

i − 3Ω̃v2
i + 8vi − 5Ω̃

2(1− v2
i )2(vi − Ω̃)

viΩ̃δr̃i.

(5.45)

Consistency of this equation and (5.43) for non-trivial δr̃o and δr̃i requires that

0 =
A

Ω̃δr̃o

B

Ω̃δr̃i

− A

Ω̃δr̃i

B

Ω̃δr̃o

=
vo − vi

8vovi(1− v2
o)4(1− v2

i )4

[
X(vo, vi)

2v2
ov

2
i log(vo/vi)
vo − vi

+ Y (vo, vi)
] (5.46)

where X and Y are polynomials of degree 12 and 13 respectively.
We see that this is not exactly the same as the place where the small ring turns

into the large ring, as discussed near (4.47). However, in fig.5.3, we have plotted L̃ vs. Ẽ
for this zero mode, as well as the existence boundaries for balls and rings. We see that this
instability develops very close to that line.

Evaluating the jacobian in (4.40) along the curve where this zero mode exists shows
that it is positive there, i.e. this zero mode occurs for the small ring. Looking at fig.5.2,
we see that for fixed vo the instability occurs for smaller values of vi , i.e. the small rings,
and both rings are stable in the small gap between the existence of the zero mode and the
large/small ring merger.
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Figure 5.3: Graph showing L̃ vs. Ẽ for the axisymmetric zero mode, as well as the existence
boundaries for balls and rings.

Wavy modes

Now we will look at modes with φ dependance, in particular with n = 1, 2.
Things become complicated when we try to look at unstable modes. It seems tha

the correct approach is to make $ imaginary rather than ω. The former corresponds to
modes that rotate around the ball/ring and grow, the latter to modes that simply grow.

When we make $ imaginary, the differential equation (5.26) becomes complex.
Therefore, the conditions (5.31) and (5.32) become complex. This means that we need
two real variables to play with to find solutions, if we simply try to make $ imaginary,
generically there will be no solutions. We would have to adjust both the real and imaginary
parts to find solutions. We will not do that here. An instability at complex $̃ has been
found in [102], but we note that the usual argument that there must be a zero mode must
occur when the instability develops doesn’t apply to complex frequencies as one can pass
from positive to negative imaginary parts without passing through zero.

We verify this in fig.5.4, where we plot the absolute values of the conditions (5.31)
and (5.32) vs. $̃2 for n = 1, 2. We see that there are zeroes for positive $̃2, corresponding
to oscillating fluctuations, but not for negative $̃2, corresponding to instabilities.

5.4 Discussion

We have seen that the 2+1 dimensional plasmastring does not have Plateau-
Rayleigh instabilities. A very thorough study of the Plateau-Rayleigh instability for higher
dimensional plasmastrings was performed in [105], where the instability was shown to ex-
ist. Note that large black strings in AdS do not have the Gregory-Laflamme instability
[48, 106–108], whereas their asymptotically flat counterparts do. This fits with the idea
that plasmaballs will behave more and more like flat space black holes (and less like AdS
black holes) as we increase the number of dimensions, as discussed in §1.3.
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n = 2 with vo = 0.8. Positive roots correspond to fluctuations, negative roots correspond
to instabilities.
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One interesting direction for further study would be following the instabilities
found to their endpoint. This would require numerical simulations, but one would expect
these to be much simpler than the corresponding gravitational simulations. Although the
surface tension approximation will break down when the tubes pinch off, it is possible that
the code may get closer to the pinch without braking down like in the gravitational setting
[43, 44] and one might be able to extrapolate to the pinch more reliably and see if it takes
place in finite time.

We have also seen that the small plasmarings are unstable with respect to axisym-
metric fluctuations, whereas the large plasmarings are stable. This confirms the thermody-
namic prediction of §4.3.5. It is still puzzling that the instability does not appear at the
exact place predicted thermodynamically, although it appears very close. This could be an
artefact of the approximations made – surface tension, neglecting viscosity etc. However,
the thermodynamic predictions were made under many of the same approximations and it
would be surprising if the precise values of the transport coefficients were relevant for the
discrepancy.



Chapter 6

Higher dimensional plasmarings

In this chapter we turn to a consideration of localised plasma configurations in
certain massive 4 and 5 dimensional field theories obtained by compactifying related 5 and 6
dimensional CFTs on a Scherk-Schwarz circle. Although the field theories in question are not
gauge theories (e.g. the 5 dimensional massive theory could be obtained by compactifying the
(0,2) theory on the world volume of an M5 brane on a Scherk-Schwarz circle) they undergo
first order ‘deconfining’ transitions and the high temperature phase of these theories admits
a fluid dynamical description. The fluid configurations we will construct are dual to localised
black holes and black rings in Scherk-Schwarz compactified AdS6 and AdS7 respectively.

The constructions we have described in Ch.4 admit simple generalisations to
plasma solutions dual to black holes and black rings in Scherk-Schwarz compactified AdS6

space. As the qualitative nature of the moduli space of black hole like solutions in six
dimensional gravity is poorly understood, this study is of interest. The boundary duals of
these objects, in the long wavelength limit, are stationary solutions to the equations of fluid
dynamics of a 4 dimensional field theory. In §6.1 we construct such solutions. Our study
will be less thorough than our 3 dimensional analysis above; we find solutions analogous
to those in 3 dimensions, but we postpone the complete parameterisation and study of the
thermodynamic properties of these solutions to future work. It turns out that these solu-
tions occur in two qualitatively distinct classes. The simplest solutions are simply spinning
balls of plasma; the fact that these balls spin causes them to flatten out near the ‘poles’.
As these balls are spun up, their profile begins to ‘dip’ near the poles (see fig.6.1). As these
balls are further spun up, they pinch off at the centre and turn into doughnut shaped rings
(see fig.6.1).

As discussed in §1.3, the horizon topology of the black objects dual to the rotating
plasmaballs and plasmarings described above, is obtained by fibering the fluid configuration
with an S1 that shrinks to zero at the fluid edges. This procedure yields a horizon topology
S4 for the dual to the rotating plasmaball, and topology S3 × S1 for the dual to the
plasmaring. As plasmaball and plasmaring configurations appear to exhaust the set of
stationary fluid solutions to the equations of fluid dynamics, it follows that arbitrarily large
stationary black objects in Scherk-Schwarz compactified AdS6 all have one of these two
horizon topologies. S2×S2 is an example of another topology one could have imagined for
black objects in this space; these would have been dual to hollow shells of rotating fluid;

97
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Figure 6.1: Spinning ball and ring solutions.

however, there are no such stationary solutions to the equations of fluid dynamics.
The analysis of four dimensional fluid configurations, described above, demon-

strates the power of the fluid dynamical method. In simple contexts, the Navier-Stokes
equations are much easier to solve than the full set of Einstein’s equations, and rather
easily reveal interesting and nontrivial information. It would be interesting to extend our
analysis of fluid dynamical models in various directions to obtain information about the
moduli space and stability of classes of black solutions in AdS spaces.

An obvious extension would be to move to higher dimensions. In §6.2 we have
derived the equations relevant to stationary fluid flow in 5 dimensions, but we leave the
study of their solutions (and their higher dimensional counterparts) to future work. A
complete analysis of these equations would yield the spectrum of black holes in Scherk-
Schwarz compactified AdS7 spaces, in terms of the fluid dynamics of the deconfined phase
of the M5 brane theory on a Scherk-Schwarz circle.

6.1 Four dimensional plasmarings

We now turn to the study of spinning lumps of plasma in four dimensions. As dis-
cussed previously, this is dual to the study of black objects in Scherk-Schwarz compactified
AdS6. The equation of state of this fluid is given by (4.7) restricted to d = 4.

P =
α

Tc

(
T 5 − Tc

5
)
. (6.1)

6.1.1 Equations of motion

In this section we set up the equations of motion of our fluid. We proceed in direct
imitation of our analysis of d = 3 above. We use the metric

ds2 = −dt2 + dr2 + r2dφ2 + dz2 . (6.2)

We choose the origin so that r = 0 is the axis of rotation and there is a reflection symmetry
in the plane z = 0.
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For our configurations, uµ = γ(1, 0,Ω, 0) with γ =
(
1− Ω2r2

)−1/2. We describe
the upper surface by f(r, z) = h(r) − z. Following (2.30), as usual, this leads to the
temperature and pressure profile

T =
T√

1− Ω2r2
, P =

α

Tc

(
T 5

(1− Ω2r2)5/2
− Tc

5

)
. (6.3)

The extrinsic curvature of the surface is

Θ = ∓rh
′′ + h′(1 + h′2)
r(1 + h′2)3/2

(6.4)

where the upper sign refers to the upper (z > 0) surface.
We define dimensionless variables as before (with ξ′ defined in (4.14))

Ω̃ = ξ′Ω , v = Ωr , h̃(v) = Ωh(r) , T̃ =
T

Tc
(6.5)

The boundary condition (2.31) for an upper surface gives

T̃ 5

(1− v2)5/2
− 1 = −Ω̃

vh̃′′ + h̃′(1 + h̃′2)
v(1 + h̃′2)3/2

. (6.6)

This can be integrated once to give

vh̃′√
1 + h̃′2

= − T̃ 5

3Ω̃(1− v2)3/2
+
v2

2Ω̃
+
C
Ω̃
, (6.7)

where C is an integration constant.

6.1.2 Solutions

Now we will discuss the space of solutions to (6.7). We will find several types of
solutions, dual to black objects with different horizon topologies.

The differential equation (6.7) can be written as

dh̃
dv

= − 2T̃ 5 − 3(v2 + 2C)(1− v2)3/2√
36Ω̃2v2(1− v2)3 −

[
2T̃ 5 − 3(v2 + 2C)(1− v2)3/2

]2
. (6.8)

It follows that the outer surface of our plasma configuration is given by

h̃(v) =
∫ v

vo

dx

− 2T̃ 5 − 3(x2 + 2C)(1− x2)3/2√
36Ω̃2x2(1− x2)3 −

[
2T̃ 5 − 3(x2 + 2C)(1− x2)3/2

]2

 (6.9)

Of course this only makes sense provided

6Ω̃x(1− x2)3/2 ≥
∣∣∣2T̃ 5 − 3(x2 + 2C)(1− x2)3/2

∣∣∣ ∀ x ∈ (v, vo). (6.10)
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Inner boundaries to the plasma configuration (if they exist) are described by a
function f(r, z) = z − h(r). The equivalent of (6.8), with a new integration constant D
replacing C, is

dh̃
dv

=
2T̃ 5 − 3(v2 + 2D)(1− v2)3/2√

36Ω̃2v2(1− v2)3 −
[
2T̃ 5 − 3(v2 + 2D)(1− v2)3/2

]2
. (6.11)

The profiles of such boundaries may be obtained by integrating the equation above.
Even before doing any analysis, we will find it useful to give names to several easily

visualised, topologically distinct fluid configurations.

Ordinary ball: v′(l) = h̃(l) = 0 at v = vo. h̃′(l) > 0 for 0 < v < vo. h̃′(l) = 0 at v = 0.

Pinched ball: v′(l) = h̃(l) = 0 at v = vo. h̃′(l) > 0 for 0 < v < vm. h̃′(l) = 0 at v = vm.
h̃′(l) < 0 for 0 < v < vm. h̃′(l) = 0 at v = 0.1

Ring: v′(l) = h̃(l) = 0 at v = vo. h̃′(l) > 0 for vm < v < vo. h̃′(l) = 0 at v = vm. h̃′(l) < 0
for vi < v < vm. v′(l) = h̃(l) = 0 at v = vi, where vi < vm < vo.

Examples of these surfaces can be seen in figs.6.4-6.5. Each of these solutions could have
lumps of fluid eaten out of them. We will use the terms

Hollow ball: A ball (pinched or ordinary) with a ball cut out from its inside.

Hollow ring: A ring with a ring cut out from its inside.

Toroidally hollowed ball: A ball with a ring cut out from its inside.

It is easy to work out the horizon topology of the gravitational solutions dual to
the plasma topologies listed above. [32, 33] have obtained a restriction on the topologies
of horizons of stationary black holes in any theory of gravity that obeys the dominant
energy condition; any product of spheres obeys the conditions from their analysis. Although
the dominant energy condition is violated in AdS space, in table 6.1, we have listed all 4
dimensional horizons that are topologically products of lower dimensional spheres, and note
that all but one of these configurations is obtained from the dual to plasma objects named
above (B3 is a ball, B2 is a disc and B1 is an interval). The last one, T 4, is a marginal case
of the theorem and is probably ruled out anyway.

In the rest of this section we will determine all stationary, rigidly spinning solutions
of the equations of fluid dynamics described above.

Ordinary ball

We search for solutions of (6.9) for which h̃′(l) vanishes at v = 0 and v′(l) vanishes
at the outermost point of the surface v = v0; we also require that h̃ decrease monotonically

1Black holes with wavy horizons in six dimensions and above were predicted in [36].
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Horizon topology Plasma topology Object
S4 B3 Ball
S3 × S1 B2 × S1 Ring
S2 × S2 B1 × S2 Hollow ball
S2 × T 2 B1 × T 2 Hollow ring
T 4 None None

Table 6.1: Topologies of gravity and plasma solutions

from 0 to vo. The first condition sets T̃ 5 = 3C. The condition that v′(l) is zero at vo may
be used to determine Ω̃ as a function of vo and T̃ 5:

Ω̃ =
2T̃ 5 − (3v2

o + 2T̃ 5)(1− v2
o)3/2

6vo(1− v2
o)3/2

. (6.12)

Note that the numerator of the formula for h̃′(v) be written as

2
[
1− (1− v2)3/2

](
T̃ 5 − 3v2(1− v2)3/2

2
[
1− (1− v2)3/2

])

and 2
(
1− (1− v2)3/2

)
≥ 3v2(1 − v2)3/2. Thus, T̃ 5 > 1 guarantees our monotonicity re-

quirement. From (6.3), we see that this also ensures that the pressure is positive throughout
the ball.

In summary, the full set of ordinary ball solution is obtained by substituting C =
T̃ 5/3 and Ω = Ω(T̃ 5, vo) (obtained from (6.12)) into (6.9). This procedure gives us a ball
solution for any choice of T̃ 5 > 1 and vo > 0.

In figs.6.4,6.5 we present a plot of the profile h̃(v) for the ball solution at vo = 0.8,
T̃ 5 = 1.5.

Pinched ball

The pinched ball satisfies all the conditions of the ordinary ball except for the
monotonicity requirement on h̃(v); in fact the function h̃(v) is required to first increase
and then decrease as v runs from 0 to vo. It follows that C and Ω̃ for these solutions are
determined as in the previous subsubsection (C = T̃ 5/3 and Ω from (6.12)) however the
requirement h̃′′(v) > 0 at v = 0 forces T̃ 5 < 1. This ensures that h̃′(v) > 0 at small v and
h̃′(v) < 0 at larger v. It also ensures that the solution has negative pressure at the origin
and positive pressure at the outermost radius.

Not every choice of (T̃ 5, vo) ∈ [0, 1], however, yields an acceptable pinched ball
solution. As we decrease vo from 1, at fixed T̃ 5, it turns out that h̃(0) decreases, and in
fact vanishes at a critical value of vo. Solutions at smaller vo are unphysical. The physical
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domain,in (T̃ 5, vo) space is given by the inequality

h̃(0) = −
∫ vo

0

dh̃
dv

dv

=
∫ vo

0

2T̃ 5 − (3v2 + 2T̃ 5)(1− v2)3/2√
36Ω̃2v2(1− v2)3 −

[
2T̃ 5 − (3v2 + 2T̃ 5)(1− v2)3/2

]2
dv ≥ 0 . (6.13)

The boundary of the domain permitted by (6.13) is plotted in fig.6.2. The full set of pinched
ball solutions is parameterised by values of vo and T̃ 5 in the region indicated in fig.6.2.
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Figure 6.2: Domain of ball solutions.

In figs.6.4,6.5 we present an example of the profile h̃(v) for the pinched ball solution
at parameters vo = 0.8, T̃ 5 = 0.55.

Ring

The plasma of the ring configuration excludes the region v < vi; as this region
omits v = 0, T̃ 5 and C are not constrained as before.

As v′(l) vanishes at vi, vo we have the following constraints

2T̃ 5 − 3(v2
i + 2C)(1− v2

i )3/2 = −6Ω̃vi(1− v2
i )3/2 ,

2T̃ 5 − 3(v2
o + 2C)(1− v2

o)3/2 = 6Ω̃vo(1− v2
o)3/2 .

(6.14)

the choice of negative/positive square roots comes from the requirements that h̃′(l) < 0
at v = vi and h̃′(l) > 0 at v = vo. These equations may be used to solve for C and Ω̃
as a function of T̃ 5, vi, vo. T̃ 5(vo, vi) may then be determined from the requirement that
h̃(vi) = h̃(vo) = 0, i.e.∫ vo

vi

dh̃
dv

dv = −
∫ vo

vi

2T̃ 5 − 3(v2 + 2C)(1− v2)3/2√
36Ω̃2v2(1− v2)3 −

[
2T̃ 5 − 3(v2 + 2C)(1− v2)3/2

]2
dv = 0 . (6.15)

In practice, it is easier to first eliminate T̃ 5 and C using (6.14), then substitute vi = Ω̃r̃i,
vo = Ω̃ro and use (6.15) to solve for Ω̃ at fixed r̃i and r̃o. after this, one can determine T̃ 5,
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Figure 6.3: T̃ 5 as a function of vi and vo for ring solutions.

vi and vo from Ω̃, r̃i and r̃o. We present a 3 dimensional plot of T̃ 5 as a function of vi and vo

for 1 < r̃o < 10, 0.1 < r̃i/r̃o < 0.9 in fig.6.3. All of these solutions have T̃ 5 > 0, as required.
Unfortunately, with this method, one cannot see if there is a physically acceptable solution
for the whole range of 0 < vi < vo < 1. It appears that there is a solution for every value
of r̃i < r̃o.

In figs.6.4,6.5 we plot the profile function h̃(v) for the ring solution at parameters
r̃i = 10, r̃o = 20.

Hollow ball

In this subsection we will demonstrate the non-existence of rigidly rotating hollow
ball solutions to the equations of fluid dynamics. Let us suppose such a solution did exist.
The inner surface must have vanishing gradient at v = 0; this sets D = T̃ 5/3. Now let the
outermost point of the eaten out region be v = ṽo. The inner surface must have a vertical
tangent at ṽo. This also implies that the outer surface also has a vertical tangent at ṽo (the
condition for a vertical tangent is identical for an outer or inner surface). However, such
points saturate the inequality (6.10) and, as discussed in §6.1.2, this never happens in the
interior of a ball. It follows that hollow ball solutions do not exist.

Hollow ring and toroidally hollowed ball

Let us first consider the possibility of the existence of a toridally hollowed ball
solution. Let the innermost and outermost part of the hollowed out region occur at v = ṽi

and v = ṽo respectively. Let us define a(v) = 6Ω̃v(1 − v2)3/2 and b(v) = −2T̃ 5 + 3(v2 +
2D)(1 − v2)3/2 where D is the integration constant for the inner surface. From (6.11) it
must be that

a(ṽo) = b(ṽo) a(ṽi) = −b(ṽi) |b(v)| < |a(v)| ∀v ∈ (ṽi, ṽo)

For these conditions to apply, b(v) must start out negative at v = ṽi, increase, turn positive,
and cut the a(v) curve from below at v = ṽo. We have performed a rough numerical scan



104 Chapter 6: Higher dimensional plasmarings

0.2 0.4 0.6 0.8

0.05

0.1

0.15

0.2

v

h̃

0.2 0.4 0.6 0.8

0.02

0.04

0.06

0.08

0.1
h̃

v
0.14 0.16 0.18 0.22 0.24

0.01

0.02

0.03

0.04

0.05

h̃

v
0.20

Figure 6.4: Profile of the surface of an ordinary ball, pinched ball and ring.

of allowed values of parameters (T̃ 5, Ω̃,D); it appears that this behaviour never occurs
(although we do not, however, have a rigourous proof for this claim). For all physically
acceptable values of parameters, the curve b(v) appears to either stay entirely below a(v)
or to cut it from above.

These considerations, which could presumably be converted into a proof with
enough effort, lead us to believe that the existence of hollow balls is highly unlikely. We
believe that similar reasoning is likely to rule out the existence of hollow rings, although
this is more difficult to explicitly verify, as our understanding of the parameter ranges for
acceptable ring solutions is incomplete. In fact, a thorough numerical scan was performed
in [51] which did rule out the possibility of hollow rings and toroidally hollowed balls.

In order to understand intuitively why hollow rings and toroidally hollow balls are
unlikely, note that the pressure at the inner and outermost parts of the hollowed out region
is given by

P(ṽi) = ρ0Ω̃
(
−|v′′v=ṽi

|+ 1
ṽi

)
, P(ṽo) = ρ0Ω̃

(
−|v′′v=ṽo

| − 1
ṽo

)
,

where v′′v=ṽi
is positive and v′′v=ṽo

is negative. Provided that |v′′v=ṽi
| and |v′′v=ṽo

| are not
drastically different, we would require P(ṽi) > P(ṽo). However, the pressure increases
monotonically with radius.

In conclusion, we strongly suspect, but have not yet fully proved, that the full set
of rigidly rotating solutions to the equations of fluid dynamics in d = 4 is exhausted by
ordinary balls, pinched balls and rings.

6.2 Five dimensional plasmarings

Up till now, we have presented an analysis of stationary fluid configurations of
the three and four dimensional fluid flows. The analysis of analogous configurations in
one higher dimension has an interesting new element. The rotation group in four spatial
dimensions, SO(4), has rank 2. Consequently a rotating lump of fluid in five dimensions
will be characterised by three rather than two conserved charges (two angular momenta
plus energy). When one of the two angular momenta is set to zero, it seems likely that
the set of stationary solutions will be similar to those of the four dimensional fluid; in
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Figure 6.5: 3D plot of the surface of an ordinary ball, pinched ball and ring.

this limit we expect ball and ring configurations whose dual bulk horizon topologies are S5

and S4 × S1 respectively. However turning on the second angular momentum on the ring
solution could centrifugally repel the fluid away from the second rotational axis, leading to
a fluid configuration with dual bulk horizon topology S3×T 2. Such configurations have not
yet been discovered in gravity, and it would be exciting to either construct them in fluid
mechanics, or to rule out their existence.

In this section we set up and partially solve the equations of stationary fluid flow in
five dimensions. While the stationary equations of fluid dynamics are trivial to solve in the
bulk in every dimension, boundary conditions are harder to impose in higher dimensions.
In the particular case of 5 dimensions, the imposition of these boundary conditions requires
the solution of a 2nd order ordinary differential equation, that we have not (yet?) been able
to solve. It may be that a full study of this case would require careful numerical analysis,
which we leave to future work. In the rest of this section we simply set up the relevant
equations, and comment on the dual bulk interpretations of various possible solutions.

Consider a fluid propagating in flat five dimensional space

ds2 = −dt2 + dr2
1 + r2

1dφ2
1 + dr2

2 + r2
2dφ2

2 .

Consider a fluid flow with velocities given by uµ = γ(1, 0,Ω1, 0,Ω2), where γ = (1 −
v2

1 − v2
2)−1/2, v1 = Ω1r1 and v2 = Ω2r2. Let the (upper/lower) fluid surface be given

by f(r1, r2) = ±(h(r1)− r2) = 0.
Following (2.30), once again, this leads to the temperature and pressure profile

T =
T√

1− v2
1 − v2

2

, P =
α

Tc

(
T 6

(1− v2
1 − v2

2)3
− Tc

6

)
. (6.16)

The extrinsic curvature of the surface is

Θ = ∓r1hh
′′ + (1 + h′2)(hh′ − r1)
r1h(1 + h′2)3/2

(6.17)

Substituting these into (2.31), we obtain the condition (the upper sign should be
used for upper surfaces)

T̃ 6

(1− Ω2
1r

2
1 − Ω2

2h
2)3
− 1 = ∓ξ′ r1hh

′′ + (1 + h′2)(hh′ − r1)
r1h(1 + h′2)3/2

(6.18)
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Figure 6.6: Topologies of five dimensional solutions.

Horizon topology Plasma topology Object
S5 B4 Ball
S4 × S1 B3 × S1 Ring
S3 × T 2 B2 × T 2 Torus
S3 × S2 B1 × S3 Hollow ball
S2 × S2 × S1 B1 × S2 × S1 Hollow ring
S2 × T 3 B1 × T 3 Hollow Torus
T 5 None None

Table 6.2: Topologies of gravity and plasma solutions

Unfortunately we have not yet been able to solve this equation; we postpone further
analysis of (6.18) to future work. In the rest of this section we qualitatively describe possible
types of solutions to these equations, and their bulk dual horizon topologies.

In fig.6.6, we have sketched some possible topologies for these solutions. The first
touches both the r1 = 0 and r2 = 0 axes and we refer to this as a ball. The second type
only touches one of these axes and we refer to this as a ring. The third type touches neither
of the axes, as the plasma has the topology of a solid three-torus we refer to this as a torus.

Each of these could be pinched near either axis, and there could be hollow versions
(though the considerations of §6.1 make it seem unlikely that hollow configurations will
actually be solutions).

The horizon topology of the dual black object can be found by fibering three
circles over the shapes in fig.6.6. One of these circles degenerates at each axis (the angular
coordinates φ1 and φ2), and the other degenerates on the fluid surface (the Scherk-Schwarz
circle). The topologies generated are: listed in table 6.2.

6.3 Discussion

In this chapter we constructed solutions of fluid mechanics that are dual to black
holes with horizon topologies S4 and S3 × S1. We have argued that fluid solutions dual
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to horizon topologies S2 × S2 and S2 × T 2 do not exist, although we were only able to
conclusively rule out the former. Note that this does not tell us that such solutions cannot
exist in gravity. Within the regime of our approximations we can only turn on one angular
momentum, whereas black holes in six dimensions can have two independent angular mo-
menta. We can only conclude that these two other topologies require both angular momenta
to be non-zero.

Of particular interest are the pinched ball solutions. Emparan and Myers have
suggested that ultra-spinning black holes in 6 dimensional flat space have Gregory-Laflamme
type instabilities [36]. When such an instability appears, one expects a new branch of wavy
solutions to appear, much like the wavy strings of [46]. As they were unable to provide
more than a qualitative argument for their existence, the fact that we can construct wavy
fluid mechanics solutions quantitatively is encouraging.

It should also be relatively straightforward, and rather interesting, to more fully
analyse the thermodynamics of the 4 dimensional solutions presented in this chapter. This
would shed light on which of the two proposed phase diagrams indicated in fig.1.2 is the
correct one. Such an analysis has been carried out in [51], where they also ruled out the
hollow ring solutions (dual to S2 × T 2 horizons). The phase diagram found there looks a
lot closer to the second proposal in fig.1.2 than the first.

An extension of our work to obtain the moduli space of 5 and higher dimensional
fluid configurations - and so 7 and higher dimensional gravitational black solutions should
also be possible (though analytic solutions may be harder to obtain in higher dimensions).
Such an extension would yield interesting information about horizon topologies in higher
dimensional gravitational theories. An obvious conjecture based on intuition from fluid
flows would be that the full set of stationary fluid solutions in 5 dimensions appear in three
distinct topological classes; solutions whose bulk dual topologies would be S5, S4 × S1

and S3 × T 2. The reason one might expect the last solution is that in 5 (but no lower)
dimensions, it is possible to have solutions that rotate about two independent axes; these
two rotations should be able to create their own distinct centrifugal ‘holes’, resulting in the
above topology. An approximate construction of the last two types of configuration has
been presented in [3]. This construction relies on an expansion in powers of the ratio of
the size of the various circles/spheres that appear in the topologies, much like the blackfold
construction of [35]. This provides evidence that such horizon topologies do in fact exist in
general raltivity.
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Appendix A

Notation

We work in the (− + ++) signature. µ, ν denote space-time indices, i, j = 1 . . . c
label the c different R-charges and a, b = 1 . . . n label the n different angular momenta. The
dimensions of the bulk space-time (gravity side) is denoted by D whereas the spacetime
dimensions of the space-time on the field theory side (excluding dimensions ignored in fluid
mechanics) is denoted by d.

In chapter 3 we consider fluids on Sd−1 × R which are dual to gravity on AdSD
with D = d+ 1.

In chapters 4–6 we consider fluids on Rd−1,1×S1, truncated on the S1. These are
dual to gravity on Scherk-Schwarz compactified AdSD with D = d+ 2.

A summary of the variables used in this dissertation appears below. Numbers in
parentheses refer to the equation where that variable is defined.

aµ acceleration (2.10)
A surface area of fluid

Bm m-dimensional ball
c no. of commuting R-charges
cs speed of sound (5.4)
C confinement heat capacity

C,D integration constants in §6.1
d dimensionality of fluid
D dimensionality of gravity dual
Dij diffusion coefficients
E total energy of configuration
Ẽ see (4.26)

f(x) surface at f(x) = 0
g±(v) boundary conditions (4.24)
GD Newton constant in

(SS)AdSD
h(ν) P/T d, see (3.3)
hi ∂h/∂νi

h(r) surface height z = h(r) in
Ch.6

h̃(v) Ωh(v/Ω)
hµν induced metric of surface
Hi black hole parameter in §3.5-

3.6
jµi diffusion current
Jµi R-charge current
JµS entropy current
Kµ Killing vector for velocity
L total angular momentum
L̃ see (4.26)

lmfp thermalisation scale
l periodicity of y/2π
la rotational Killing vector
mi fluid chemical potential
m black hole parameter in §3.5-

3.6
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n no. of angular momenta or or-
der of instability in Ch.5

nµ unit normal of surface
P proper fluid pressure

Pµν projection tensor (2.4)
qµ heat flux
q black hole parameter in §3.5-

3.6
QX conserved charge for current

X
r̃ r/ξ′

ro outer radius of plasma-
ball/ring

ri inner radius of plasmaring
r̃o ro/ξ

′

r̃i ri/ξ
′

ri proper R-charge density
R radius of ball in §5.2.1
Ri total R-charge
Ri fluid R-charge
r+ horizon radius

RAdS AdS radius
s proper fluid entropy density
sc confinement entropy density
si black hole parameter in §3.5-

3.6
S total entropy of configuration
S̃ see (4.26)

Sm m-dimensional sphere
T overall temperature
T̃ T /Tc

T proper fluid temperature
Tc transition temperature

Tµν stress tensor
uµ velocity vector

∆u validity criterion (4.42)
v2

∑
a gφaφaΩ2

a

vo Ωro

vi Ωri

Vd volume of Sd−1, 2πd/2

Γ(d/2)

~w vector field normal to de-
formed surface

w W/l

W width of string in §5.2
x, y boundary scalings in §4.3.4
Xi 1/(1 + κi) (3.44)
Zgc grand partition function

(2.38)
Z̃gc see (4.26)
α equation of state parameter

(1.5)
β (∂S̃/∂Ẽ)

L̃
γ velocity normalisation (1 −

v2)−1/2

ε ξ/l
ζ bulk viscosity (2.13)
ζµ arbitrary Killing vector
η shear viscosity (2.13)
ϑ expansion (2.10)

Θµν extrinsic curvature of surface
(2.46)

Θ trace of extrinsic curvature
Θµ
µ (2.47)

κ thermal conductivity (2.10)
κi thermodynamic parameters

(3.38)
µi overall chemical potential
νi mi/T
ν unstable frequency ω = iν/l
ξ surface thickness (2.27)
ξ′ (d+ 1)ξ, (4.14)

Πµν boundary stress tensor
ρ proper fluid density
ρ0 plasma vacuum energy
ρc confinement density
σ surface tension
σE surface energy density
σS surface entropy density
σRi surface R-charge density
σµν shear tensor (2.10)
ψ (∂S̃/∂L̃)

Ẽ
ω frequency of fluctuation
$ ω − nΩ
ω̃ ξ′ω
$̃ ξ′$

Ωa angular velocity
Ω̃a ξ′Ω
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